Communication
Dalton Transactions
transfer.23 Therefore, activity in DNA cleavage does not necess-
arily correlate with redox potentials. The attenuated cleavage
activity of 1 might be explained by hydroxo-bridged dimer for-
mation16 which blocks the coordination sites of Cu(II) leaving
no space for coordination of reducing agents, thus inhibiting
the reduction process and the release of Cu(I).
5 W. Knapp Pogozelski and T. D. Tullius, Chem. Rev., 1998,
98, 1089.
6 (a) H. Stetter and K.-H. Mayer, Chem. Ber., 1961, 94, 1410;
(b) J. E. Richman and T. J. Atkins, J. Am. Chem. Soc., 1974,
96, 2268; (c) M. Suchý and R. H. E. Hudson, Eur. J. Org.
Chem., 2008, 4847.
In conclusion, we present a series of simple macrocyclic
ligands for Cu(II)-based DNA cleavers. In contrast to other
cyclen-based systems, where activity is increased by conju-
gation with moieties enhancing DNA affinity, activity increase
is achieved here by simply changing one out of four donor
atoms in the system. Cu(II) oxacyclen is the most efficient
complex that exceeds the literature-known system Cu(II) cyclen
by a factor of four to ten depending on the concentration. The
high reactivity of this derivative might be a good starting point
for developing more efficient DNA cleavers for potential medi-
cinal applications.
7 (a) J. Li, Y. Yue, J. Zhang, Q.-S. Lu, K. Li, Y. Huang,
Z.-W. Zhang, H.-H. Lin, N. Wang and X.-Q. Yu, Transition
Met. Chem., 2008, 33, 759; (b) Q. Liu, J. Zhang, M.-Q. Wang,
D.-W. Zhang, Q.-S. Lu, Y. Huang, H.-H. Lin and X.-Q. Yu,
Eur. J. Med. Chem., 2010, 45, 5302.
8 Q.-L. Li, J. Huang, Q. Wang, N. Jiang, C.-Q. Xia,
H.-H. Lin, J. Wua and X.-Q. Yu, Bioorg. Med. Chem.,
2006, 14, 4151.
9 (a) A. Bencini, E. Berni, A. Bianchi, C. Giorgi, B. Valtancoli,
D. K. Chand and H.-J. Schneider, Dalton Trans., 2003, 793;
(b) Y. Huang, S.-Y. Chen, J. Zhang, X.-Y. Tan, N. Jiang,
J.-J. Zhang, Y. Zhang, H.-H. Lin and X.-Q. Yu, Chem. Bio-
divers., 2009, 6, 475.
10 J. Stubbe and J. W. Kozarich, Chem. Rev., 1987, 87, 1107.
11 (a) S. W. Jang and J. Suh, Org. Lett., 2008, 10, 481;
(b) C. S. Rossiter, R. A. Mathews and J. R. Morrow, Inorg.
Chem., 2005, 44, 9397.
12 See ESI† for references of ligand synthesis.
13 R. Clay, P. Murray-Rust and J. Murray-Rust, Acta Cryst. B,
1979, 35, 1894.
Acknowledgements
We thank Dr Kai Licha from mivenion GmbH for generous
donations of cyclen.
Notes and references
14 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
15 G. Gasser, M. J. Belousoff, A. M. Bond and L. Spiccia, Inorg.
Chem., 2007, 46, 3876.
16 K. M. Deck, T. A. Tseng and J. N. Burstyn, Inorg. Chem.,
2002, 41, 669.
17 E. L. Hegg and J. N. Burstyn, Inorg. Chem., 1996, 35,
7474.
18 A. Sreedhara, J. D. Freed and J. A. Cowan, J. Am. Chem. Soc.,
2000, 122, 8814.
‡Crystal data for 2: C8H19CuN5O7, M = 360.82, monoclinic, a = 7.921(19) Å, b =
11.979(3) Å, c = 14.757(3) Å, α = 90°, β = 92.587(5)°, γ = 90°, V = 1398.9(6) Å3, T =
133(2) K, space group P21/n, Z = 4, μ(MoKα) = 1.604 mm−1, 17 378 reflections
measured, 4238 independent reflections (Rint = 0.0253). The final R1 value was
0.0290 (I > 2σ(I)). The final wR2 value was 0.0683 (I > 2σ(I)). The final R1 value
was 0.0399 (all data). The final wR2 value was 0.0731 (all data). The goodness of
fit on F2 was 1.089.
Crystal data for 3: C8H19CuN5O6S, M = 376.88, monoclinic, a = 8.532(16) Å, b =
11.903(2) Å, c = 14.168(3) Å, α = 90°, β = 94.368 (4)°, γ = 90°, V = 1434.7(5) Å3, T =
133(2) K, space group P21/c, Z = 4, μ(MoKα) = 1.703 mm−1, 17 105 reflections
measured, 4381 independent reflections (Rint = 0.0143). The final R1 value was
0.0241 (I > 2σ(I)). The final wR2 value was 0.0639 (I > 2σ(I)). The final R1 value
was 0.0264 (all data). The final wR2 value was 0.0649 (all data). The goodness of
fit on F2 was 1.129.
19 C. A. Detmer III, F. V. Pamatong and J. R. Bocarsly, Inorg.
Chem., 1996, 35, 6292.
20 L. M. P. Lima, D. Esteban-Gómez, R. Delgado, C. Platas-
Iglesias and R. Tripier, Inorg. Chem., 2012, 51, 6916.
21 (a) G. A. Fox and C. G. Pierpont, Inorg. Chem., 1992, 31,
3718; (b) K. Ray, T. Weyhermüller, F. Neese and
K. Wieghardt, Inorg. Chem., 2005, 44, 5345.
1 F. H. Westheimer, Science, 1987, 235, 1173.
2 J. C. Wang, Nat. Rev. Mol. Cell Biol., 2002, 3, 430.
3 H. W. Boyer, Annu. Rev. Microbiol., 1971, 25, 153.
22 S.-H. Chiou, J. Biochem., 1983, 94, 1259.
4 (a) F. Mancin, P. Scrimin, P. Tecilla and U. Tonellato, Chem. 23 J. Schnödt, M. Sieger, B. Sarkar, S. Strobel, J. Fiedler,
Commun., 2005, 2540; (b) F. Mancin, P. Scrimin and
P. Tecilla, Chem. Commun., 2012, 48, 5545.
J. S. Manzur, C.-Y. Su and W. Kaim, Z. Anorg. Allg. Chem.,
2011, 637, 930.
4360 | Dalton Trans., 2013, 42, 4357–4360
This journal is © The Royal Society of Chemistry 2013