of substituents to the tether portion (i.e., steric promotion;8
for example, the assistance by the Thorpe-Ingold effect) to
achieve good yields.4d,6 To find a viable solution, we
reexamined our tandem cyclization of 2,7-enynoates with a
titanium(II) alkoxide as shown in eq 1,9 but this time, we
chose substrates having a trisubstituted olefin. More impor-
tantly, the replacement of the ester portion of the substrate
with an appropriate chiral auxiliary led us to develop an
asymmetric synthesis of 1-5 with high enantiomeric purity.
the tandem cyclization of ethyl esters 11-14 (entries 1-4
in Table 1) nicely proceeded according to eq 1 to give the
Table 1. Preparation of Angularly Substituted
Bicyclo[3.3.0]octenones and Related Reactionsa
The tandem cyclization shown in eq 1 consists of two
steps: step 1 is the formation of titanacycle 8 from enynoates
6 and the titanium(II) reagent (η2-propene)Ti(O-i-Pr)2 (7)
readily prepared in situ from Ti(O-i-Pr)3Cl and i-PrMgCl.10
Step 2 involves the regioselective protonation of 8 with
s-BuOH giving alkenyltitanium species 9, which undergoes
intramolecular attack to the released ester group to give
bicyclic ketone 10.9 As the Group 4 metal (Ti or Zr)-
mediated intramolecular cyclization5 of a trisubstituted olefin
and other carbon-carbon multiple bonds is again a sluggish
process,11 the feasibility of the 7-mediated cyclization to give
titanacycle 8 was a matter of serious concern. Nonetheless,
desired bicyclic ketones 1-4 in good yields. The reactions
of some other relevant substrates are also shown in Table 1.
A trisubstituted olefin of a different pattern such as that in
15 also participated in the cyclization to afford bicyclic
ketone 16 as a single stereoisomer (entry 5). Even tetrasub-
stituted olefinic ester 17 is a possible substrate for this tandem
cyclization to give bicyclic ketone 18, albeit in a moderate
yield (entry 6). However, the cyclization of R,â-unsaturated
lactone 19 stopped at step 1, most likely due to steric bias
in the step-2 cyclization, to afford spirolactone 20 (entry 7).
The favorable interaction between an electron-deficient olefin
with the electron-rich, low-valent titanium center may
account for the success of the step-1 cyclization, as the
replacement of CO2R(*) of 6 with an alkyl group completely
halted the formation of the corresponding titanacycle.7a
(4) (a) Geis, O.; Schmalz, H.-G. Angew. Chem. 1998, 110, 955-958;
Angew. Chem., Int. Ed. 1998, 37, 911-914. (b) Ojima, I.; Tzamarioudaki,
M.; Li, Z.; Donovan, R. J. Chem. ReV. 1996, 96, 635-662. (c) Tamao, K.;
Kobayashi, K.; Ito, Y. Synlett 1992 539-546. (d) Schore, N. E. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 5, pp 1037-1064. (e) Schore, N. E. In Organic
Reactions; Paquette, L. A., Ed.; Wiley: New York, 1991; Vol. 40, pp 1-90.
(f) Sugihara, T.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2801-2803. (g) Adrio J.; Carretero, J. C.
J. Am. Chem. Soc. 1999, 121, 7411-7412.
Considering the synthetic importance of the bicyclic
ketones, we then turned our attention to an asymmetric
version of the above process starting with optically active
esters. After trials using several esters derived from chiral
alcohols,12 8-phenylmenthyl esters13 such as 21 in entry 1,
Table 2, were found to give the best result. Under these
conditions, the desired ketone (-)-2 was isolated in good
(5) For a review on the Group 4 metal-mediated cyclization and
carbonylative cyclization, see: Buchwald, S. L.; Nielsen, R. B. Chem. ReV.
1988, 88, 1047-1058. Negishi, E. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp
1163-1184. Broene, R. D.; Buchwald, S. L. Science 1993, 261, 1696-
1701. Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124-130. Maier,
M. In Organic Synthesis Highlights II; Waldmann, H., Ed.; VCH:
Weinheim, 1995; pp 99-113. Ohff, A.; Pulst, S.; Lefeber, C.; Peulecke,
N.; Arndt, P.; Burkalov, V. V.; Rosenthal, U. Synlett 1996, 111-118.
Negishi, E.; Takahashi, T. Bull. Chem. Soc. Jpn. 1998, 71, 755-769.
(6) (a) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 5881-5898. (b) Hicks, F. A.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 7026-7033.
(11) The successful cases are so far limited to substrates having a nitrogen
atom (coordination effect) or geminal substituents (Thorpe-Ingold effect)
in their tether portion, which are not valid for 6. For a survey on the outcome
of the cyclization of polysubstituted olefins with Group 4 metal reagents,
see: ref 6. Negishi, E.; Maye, J. P.; Choueiry, D. Tetrahedron 1995, 51,
4447-4462. Yamaura, Y.; Mori, M. Tetrahedron Lett. 1999, 40, 3221-
3224.
(7) (a) Urabe, H.; Hata, T.; Sato, F. Tetrahedron Lett. 1995, 36, 4261-
4264. (b) Urabe, H.; Takeda, T.; Hideura, D.; Sato, F. J. Am. Chem. Soc.
1997, 119, 11295-11305.
(8) Sammes, P. G.; Weller, D. J. Synthesis 1995, 1205-1222.
(9) (a) Suzuki, K.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1996, 118,
8729-8730. (b) Urabe, H.; Suzuki, K.; Sato, F. J. Am. Chem. Soc. 1997,
119, 10014-10027.
(12) See Supporting Information.
(13) Whitesell, J. K. Chem. ReV. 1992, 92, 953-964. Jones, G. B.;
Chapman, B. J. Synthesis 1995, 475-497. Seyden-Penne, J. Chiral
Auxiliaries and Ligands in Asymmetric Synthesis; Wiley: New York, 1995;
p 513. Regan, A. C. J. Chem. Soc., Perkin Trans. 1 1999, 357-373.
(10) Sato. F.; Urabe, H.; Okamoto, S. J. Synth. Org. Chem., Jpn. 1998,
56, 424-432.
382
Org. Lett., Vol. 2, No. 3, 2000