265
6. Carreño, M. C.; García Ruano, J. L.; Martín, A. M.; Pedregal, C.; Rodriguez, J. H.; Rubio, A.; Sánchez, J.; Solladié, G. J.
Org. Chem. 1990, 55, 2120.
7. Barros, D.; Carreño, M. C.; García Ruano, J. L.; Maestro, M. C. Tetrahedron Lett. 1992, 33, 2733.
8. Bueno, A. B.; Carreño, M. C.; García Ruano, J. L. An. Quim. 1994, 90, 442.
9. Carreño, M. C.; García Ruano, J. L.; Maestro, M. C.; Pérez González, M.; Bueno, A. B.; Fisher, J. Tetrahedron 1993, 49,
11009.
10. (a) García Ruano, J. L.; Martín, A. M.; Rodriguez, J. H. Tetrahedron Lett. 1991, 32, 3195. (b) García Ruano, J. L.; Martín,
A. M.; Rodriguez, J. H. J. Org. Chem. 1992, 57, 7235. (c) García Ruano, J. L.; Martín, A. M.; Rodriguez, J. H. J. Org. Chem.
1994, 59, 533. (d) Escribano, A.; García Ruano, J. L.; Martín, A. M.; Rodriguez, J. H. Tetrahedron 1994, 50, 7567.
11. The products can be isolated as alcohols or their OTMS derivatives, depending on the conditions used for their isolation
(Ref. 4).
12. Trimethylsilyl derivatives were isolated in all cases instead of the starting alcohols when the reactions were stopped before
completion, thus suggesting they are formed before the Pummerer reactions.
13. The reaction of the TMSO derivative of 2e with TFAA afforded a complex reaction mixture containing 3e (10% isolated
yield).
14. Compound 3b [1S,2R]: [α]D20=+293.2 (c 0.76 CHCl3). 1H NMR (500 MHz) δ: 7.50, 7.10 (AA0BB0, J=8.06 Hz, 4H), 6.70
(s, 2H), 4.74 (dd, J=4.4, 1.8 Hz, 1H), 4.04 (m, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 2.96 (ddd, J=18.25, 6.35, 1.35 Hz, 1H), 2.61
(d, J=11.1 Hz, 1H, OH) 2.57 (ddd, J=18.6, 12.25, 6.9, 1H), 2.36 (s, 3H), 2.0 (m, 1H), 1.93 (cd, J=12.35, 6.4 Hz, 1H). 13
C
NMR (75 MHz) δ: 151.15, 150.95, 136.75, 133.88, 131.66, 129.46, 126.63, 125.56, 108.47, 107.68, 69.14, 55.26, 55.45,
53.25, 27.71, 23.15, 21.02. Compound 30b [1R,2R]: 1H NMR (500 MHz) δ: 7.49, 7.15 (AA0BB0, J=8.08 Hz, 4H), 6.74 (s,
2H), 4.50 (t, J=2.35 Hz, 1H) 4.26 (m, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.86 (ddd, J=18.3, 7.1, 1.75, 1H), 2.69 (ddd, J=18.3,
12.05, 6.8, 1H), 2.54 (J=12.1, 7.05, 2.0 Hz, 1H), 2.37 (s, 3H), 1.95 (m, 1H), 1.57 (sbs, 1H, OH). 13C NMR (75 MHz) δ:
152.24, 150.93, 137.27, 132.57, 132.43, 129.62, 126.22, 122.56, 108.71, 107.98, 68.04, 55.93, 55.55, 47.90, 22.86, 21.07,
1
17.42. Compound 3a [α]D20=+288.6 (c 0.5 CHCl3). H NMR δ: 7.46, 7.07 (AA0BB0, J=8.04 Hz, 4H), 6.69 (s, 2H), 4.96
(d, J=2.3 Hz, 1H), 3.85 (s, 3H), 3.77 (s, 3H), 2.74 (m, 2H), 2.33 (s, 3H), 2.16 (m, 2H). 13C NMR (75 MHz) δ: 150.79,
150.62, 136.79, 133.69, 132.05, 129.15, 123.88, 123.43, 120.70, 108.98, 108.23, 72.00, 55.72, 55.41, 53.57, 29.75, 22.11,
1
21.29, 1.09. Compound 3c [α]D20=+348.3 (c 0.6 CHCl3). H NMR δ: 7.51, 7.11 (AA0BB0, J=8.1 Hz, 4H), 6.68 (s, 1H),
4.80 (d, J=1.8 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.11 (s, 1H, OH), 3.1–2.8 (m, 2H), 2.33 (s, 3H, CH3), 2.30 (s, 1H), 2.15
(m, 2H). 13C NMR δ: 150.8 (2C), 137.2, 133.1, 131.9, 129.7, 125.7, 125.0, 108.5, 107.7, 84.0, 72.7, 69.0, 56.9, 55.5, 31.8,
1
22.7, 21.0. Compound 3d [α]D20=+138.3 (c 0.6 CHCl3). H NMR δ: 7.40, 7.01 (AA0BB0, J=8.17 Hz, 4H), 6.60 (s, 2H),
5.90 (dd, J=17.30, 10.65 Hz, 1H), 5.24 (dd, J=17.30, 1.56 Hz, 1H), 5.00 (dd, J=10.65, 1.56 Hz, 1H), 4.66 (d, J=2.4 Hz, 1H),
3.75 (s, 3H), 3.69 (s, 3H), 2.59 (m, 2H), 2.30 (s, 3H), 1.98 (m, 2H), 1.55 (s, 1H, OH), 0.7(s, 9H). 13C NMR δ: 150.9, 150.6,
141.0, 135.5, 131.2, 128.7, 127.0, 124.8, 114.4, 107.9, 107.7, 55.8, 55.7, 55.6, 53.79, 29.3, 22.6, 21.0, 2.45. Compound 3e
[α]D20=+174 (c 0.1 CHCl3). 1H NMR δ: 7.48, 7.11 (AA0BB0, J=8.1 Hz, 4H), 6.66 (s, 1H), 4.42 (d, J=2.2 Hz, 1H), 3.77 (s,
3H), 3.68 (s, 3H), 2.93 (ddd, J=18.53, 6.68, 1.3 Hz, 1H), 2.51 (m, 1H), 2.33 (s, 3H, CH3), 1.98 (m, 1H), 1.80 (m, 1H), 1.57
(sbs, 1H, OH), 1.23 (s, 3H). 13C NMR δ: 151.18, 151.04, 136.79, 134.03, 131.55, 129.48, 127.34, 124.52, 108.15, 107.62,
70.50, 58.06, 55.52, 55.47, 32.54, 23.56, 22.78, 21.05.
15. According to the influence of the substituents at C-2 on the chemical shifts of C-4 (see: Eliel, E.; Wilen, S.H. Stereochemistry
of Organic Compounds; John Wiley & Sons, 1994, pp. 717) the δC-4 values observed for 3a and 3c–e (22–22.6 ppm) suggest
they must exhibit the same configuration as 3b (δC-4=23.19 ppm) with STol and OH in a cis arrangement, but different from
5b (δC-4=17.40 ppm).
16. In these cases, the configuration of the sulfoxides is the main controller of the stereoselectivity of the Pummerer
rearrangement. See: Kita, Y.; Shibata, N.; Fukui, S.; Bando, M.; Fujita, S. J. Chem. Soc., Perkin Trans. 1 1997, 1763,
and Ref. 3.
17. This could be justified by association of the TMSO− ion to the other OTMS group present in the molecule. This interaction
has been previously invoked (Shibata, N.; Fujita, S.; Gyoten, M.; Matsumoto, K.; Kita, Y. Tetrahedron Lett. 1995, 36, 109).
18. Bürgi, H. B.; Dunitz, J. D.; Schefter, E. J. Am. Chem. Soc. 1973, 95, 5065.