for C11H14N2O6·H2O: C, 45.83; H, 5.59; N, 9.72. Found: C, 45.81; H, 5.51;
N, 9.71%).
¶ The percentage of S-conformation (S%) is calculated from the equation:
S% = 100(J1A2A 2 1)/6.9. See ref. 8 and 14.
∑ Crystal data for 1a: C11H14N2O6·H2O, M = 288.26, colourless plate, 0.30
thymidine derivative 7a (77%). The triacetate 6 was also
coupled with silylated N4-benzoylcytosine (CBz·2TMS), N6-
benzoyladenine (ABz·2TMS) and N2-isobutyrylguanine (G
iBu·3TMS) to give the corresponding b-nucleoside derivatives
7b (82%), 7c (70%) and 7d (72%),‡ respectively. Methanolysis
of 7 gave diols 8 (63–90%) and then oxetane ring formation
from 8 was accomplished on treatment with sodium hexame-
thyldisilazide in THF at room temperature, yielding only the
corresponding 3A-O,4A-C-methyleneribonucleoside derivatives
9 (78–100%). The desired products 1 were obtained (65–71%)
by removal of a TBDPS group in 9. We have, thus, achieved a
facile synthesis of 3A-O,4A-C-methyleneribonucleosides 1 in
good yield.§
3 0.20 3 0.10 mm, orthorhombic, P212121, a
= 8.6242(10), b =
20.6008(8), c = 7.2767(11) Å, V = 1292.8(3) Å3, T = 283 K, Z = 4, m
(Cu–Ka) = 1.54 mm21, 1177 reflections measured, 1155 independent
reflections, 1037 reflections observed, R = 0.0397, Rw = 0.0984. CCDC
graphic data in .cif format.
1 E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 543; S. L. Beaucage
and R. P. Iyer, Tetrahedron, 1993, 49, 6123; J. F. Milligan, M. D.
Matteucci and J. C. Martin, J. Med. Chem., 1993, 36, 1923; N. T.
Thuong and C. Hélène, Angew. Chem., Int. Ed. Engl., 1993, 32, 666.
2 H. Hashimoto and C. Switzer, J. Am. Chem. Soc., 1992, 114, 6255; J. P.
Dougherty, C. J. Rizzo and R. Breslow, J. Am. Chem. Soc., 1992, 114,
6254; P. A. Giannaris and M. J. Damha, Nucleic Acids Res., 1993, 21,
4742; R. Alul and G. D. Hoke, Antisense Res. Dev., 1995, 5, 3; T. P.
Prakash, K.-E. Jung and C. Switzer, Chem. Commun., 1996, 1793; T. L.
Sheppard and R. Breslow, J. Am. Chem. Soc., 1996, 118, 9810; E. R.
Kandimalla, A. Manning, Q. Zhao, D. R. Shaw, R. A. Byrn, V.
Sasisekharan and S. Agrawal, Nucleic Acids Res., 1997, 25, 370.
3 H. C. Schröder, R. J. Suhadolnik, W. Pfleiderer, R. Charubala and W. E.
G. Müller, Int. J. Biochem., 1992, 24, 55.
4 M. Wasner, R. J. Suhadolnik, S. E. Horvath, M. E. Adelson, N. Kon,
M.-X. Guan, E. E. Henderson and W. Pfleiderer, Helv. Chim. Acta,
1997, 80, 1061; E. I. Kvasyuk, T. I. Kulak, O. V. Tkachenko, S. L.
Sentyureva, I. A. Mikhailopulo, R. J. Suhadolnik, E. E. Henderson, S. E.
Horvath, M.-X. Guan and W. Pfleiderer, Helv. Chim. Acta., 1998, 81,
1278.
The conformational analysis of the obtained 3A-O,4A-C-
1
methyleneribonucleosides 1 was carried out by means of H
NMR and X-ray crystallographic data. Namely, all of the
bicyclic nucleoside analogues 1 show a relatively large J1A2A
value (7.3–7.6 Hz in CD3OD), which means that these
nucleoside analogues have predominantly the S-conformation
(S% = 91–96%),¶ regardless of the type of the nucleobase.
Furthermore, an X-ray crystallographic analysis of 1a shows
that the sugar pucker pseudorotation phase angle (P) is 136.2°
and the maximum out-of-plane pucker (nmax) is 32.3°, charac-
teristic of the C1A-exo-C2A-endo form (S-conformation) of sugar
puckering.∑
It is noteworthy and very interesting that the expressed S-
preference of the nucleoside analogues 1 is vastly different from
conformational analysis of other nucleosides possessing a 2A-
OH group, e.g. uridine (S% = 52%),8 cytidine (S% = 26%),8
3A-deoxyuridine (S% = 3%)8,12 and 3A-deoxycytidine (S% =
0%).8,13
5 V. Lalitha and N. Yathindra, Curr. Sci., 1995, 68, 68; H. Robinson,
K.-E. Jung, C. Switzer and A. H.-J. Wang, J. Am. Chem. Soc., 1995, 117,
837; J. Doornbos, J. A. J den Hartog, J. H. van Boom and C. Altona, Eur.
J. Biochem., 1981, 116, 403; J. Doornbos, R. Charubala, W. Pfleiderer
and C. Altona, Nucleic Acids Res., 1983, 11, 4569.
Further studies on these bicyclic nucleosides are now in
progress.
A part of this work was supported by a Grant-in-Aid for
Scientific Research (B), No. 09557201, from the Japan Society
for the Promotion of Science. We are also grateful to the Takeda
Science Foundation for financial support.
6 P. Herdewijn, Liebigs Ann. Chem., 1996, 1337; E. T. Kool, Chem. Rev.,
1997, 97, 1473.
7 S. Obika, D. Nanbu, Y. Hari, K. Morio, Y. In, T. Ishida and T.Imanishi,
Tetrahedron Lett., 1997, 38, 8735; S. Obika, D. Nanbu, Y. Hari, J.
Andoh, K. Morio, T. Doi and T. Imanishi, Tetrahedron Lett., 1998, 39,
5401; S. K. Singh, P. Nielsen, A. A. Koshkin and J. Wengel, Chem.
Commun., 1998, 455; A. A. Koshkin, S. K. Singh, P. Nielsen, V. K.
Rajwanshi, R. Kumar, M. Meldgaard, C. E. Olsen and J. Wengel,
Tetrahedron, 1998, 54, 3607; S. K. Singh and J. Wengel, Chem.
Commun., 1998, 1247; A. A. Koshkin, P. Nielsen, M. Meldgaard, V. K.
Rajwanshi, S. K. Singh and J. Wengel, J. Am. Chem. Soc., 1998, 120,
13252.
Notes and references
† As an altanative route for the synthesis of 1, we briefly tried a coupling
reaction of the oxetane derivative 10 with silylated thymine, resulting in
exclusive C–O bond fission of the oxetane ring to afford only 11.
8 S. Obika, K. Morio, D. Nanbu and T. Imanishi, Chem. Commun., 1997,
1643.
9 S. Obika, K. Morio, Y. Hari and T. Imanishi, Bioorg. Med. Chem. Lett.,
1999, 9, 515.
10 R. D. Youssefyeh, J. P. H. Verheyden and J. G. Moffatt, J. Org. Chem.,
1979, 44, 1301.
11 H. Vorbrüggen, K. Krolikiewiczz and B. Bennua, Chem. Ber., 1981,
114, 1234; H. Vorbrüggen and G. Höfle, Chem. Ber., 1981, 114,
1256.
12 Measured in (CD3)2SO: T.-S. Lin, J.-H. Yang, M.-C. Liu, Z.-Y. Shen,
Y.-C. Cheng, W. H. Prusoff, G. I. Birnbaum, J. Giziewicz, I. Ghazzouli,
V. Brankovan, J.-S. Feng and G.-D. Hsiung, J. Med. Chem., 1991, 34,
693.
13 T. L. Sheppard, A. T. Rosenblatt and R. Breslow, J. Org. Chem., 1994,
59, 7243.
14 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1973, 95, 2333; C.
Altona, Recl. Trav. Chim. Pays-Bas, 1982, 101, 413; F. A. A. M. de
Leeuw and C. Altona, J. Chem. Soc., Perkin Trans. 2, 1982, 375.
‡ Guanosine derivative 7d was obtained as a mixture of N9 and N7
regioisomers (72%, N9/N7 = ca. 1/3) which was directly converted to 8d
without separation. The N9 and N7 isomers of 8d were obtained in 63 and
18% yield, respectively, after silica gel chromatography. The ster-
eochemistry of each isomer 8d was determined by comparison of their 1H
and 13C NMR data.
§ Selected data for 1a: mp 119–120 °C (AcOEt); [a]2D5 263.1 (c 0.44,
MeOH); nmax(KBr)/cm21 4016, 3451, 1723; dH(CD3OD) 1.89 (3H, s),
3.75, 3.83 (2H, AB, J 12), 4.14 (1H, d, J 8), 4.51, 4.83 (2H, AB, J 8), 5.05
(1H, d, J 5), 6.42 (1H, d, J 8), 7.52 (1H, s); m/z (FAB) 277 (M+Li+) (calc.
Communication 9/07218G
2424
Chem. Commun., 1999, 2423–2424