S. Guner et al. / Journal of Molecular Structure 984 (2010) 389–395
395
[10] C.M. Rohling, L.C. Allen, R. Ditchfield, Chem. Phys. 87 (1984) 9–15.
Fig. 4. Owing to our calculations, B3LYP method correlated for
chemical shifts are much closer to experimental data (Table 3,
Fig. 4).
[11] K. Wolinski, J.F. Hinton, P.J. Pulay, Am. Chem. Soc. 112 (1990) 8251–8260.
[12] T.A. Keith, R.F.W. Bader, Chem. Phys. Lett. 210 (1993) 223–231.
[13] T.A. Keith, R.F.W. Bader, Chem. Phys. Lett. 94 (1992) 1–8.
[14] Y. Atalay, A. Baßsog˘lu, D. Avcı, Spectrochim. Acta 69 (2008) 460–466.
[15] M. Dinçer, D. Avcı, M. Sßekerci, Y. Atalay, J. Mol. Model 14 (2008) 823–832.
[16] J. Casanovas, A.M. Namba, S. Leon, G.B.L. Aquino, G.V.J. da Silva, C. Aleman, J.
Org. Chem. 66 (2001) 3775–3782.
4. Conclusions
[17] A.B. Sebag, D.A. Forsyth, M.A. Plante, J. Org. Chem. 66 (2001) 7967–7973.
[18] D.B. Chesnut, in: K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in Computational
Chemistry, vol. 8, VCH, New York, 1996, p. 245 (Chapter 5).
[19] A.C. de Dios, Prog. Nucl. Magn. Reson. Spectrosc. 29 (1996) 229–278.
[20] D.A. Forsyth, A.B. Sebag, J. Am. Chem. Soc. 119 (1997) 9483–9494.
[21] T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev. 99 (1999) 293–352.
[22] Y. Atalay, A. Baßsog˘lu, D. Avcı, Spectrochim. Acta A69 (2008) 460–466.
[23] R. Ditchfield, J. Chem. Phys. 56 (11) (1972) 5688–5691.
[24] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (23) (1990) 8251–8260.
[25] J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, J. Chem. Phys. 104 (14)
(1996) 5497–5509.
[26] V.N. Marcus de Souza, M.S.V. Solange Wardell, J.L. Wardell, J.N. Low, C.
Glidewell, Acta Crystallogr. 12 (2007). C63o166–C63o168.
[27] G. Rauhut, S. Puyear, K. Wolinski, P. Pulay, J. Phys. Chem. 100 (15) (1996)
6310–6316.
[28] R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54 (2) (1971) 724–728.
[29] R. Ditchfield, Mol. Phys. 27 (4) (1974) 789–807.
[30] C.M. Rohlfing, L.C. Allen, R. Ditchfield, Chem. Phys. 87 (1) (1984) 9–15.
[31] A. Frisch, R.D. Dennington, T.A. Keith, J. Millam, A.B. Nielsen, A.J. Holder, J.
Hiscocks, Gauss View version 4.1 User Manual, Gaussian Inc., Wallingford, CT,
USA, 2007.
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich,
J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J.J.
Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.
Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y.
Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.
Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople,
Gaussian, Inc. Gaussian 03, Revision E.01, Pittsburgh PA, 2004.
[33] A.C. Doriguetto, C.H.T. de Paula Silva, D.G. Rando, E.I. Ferreira, J.A. Ellena, Acta
Crystallogr. E 59 (2003) O288–O289.
In this study, the results of experimental and the HF and DFT le-
vel of theory with 6-31++G(d,p) basis set are reported. Computed
and experimental geometric parameters, vibrational frequencies,
and chemical shifts of the title compound have been compared
with each other. It has noted that experimental results belong to
the solid phase in the atmospheric conditions. Compared experi-
mental, theoretical calculations belong to the gaseous phase in
the vacuum. Therefore experimental and theoretical result has
slightly different values.
To fit the theoretical frequency results with experimental ones
for HF and B3LYP levels, the data have been multiplied. Results
with multiplied factors seemed to be in good agreement with
experimental ones. The B3LYP levels, which have electron correla-
tion component, shown better fit to the experimental ones than
those of HF levels in terms of evaluate bond angles, vibrational fre-
quencies, and chemical shifts. Comparison of the experimental and
theoretical results can be very useful for understanding molecular
structure analysis.
References
[1] B.R. Bloom, C.J. Murray, Science 21 (1992) 1055.
[2] S.M.S.V. Wardell, M.V.N. De Souza, L. De Ferreira, T.R.A. Vasconcelos, J.N. Low,
C. Glidewell, Acta Crystallogr. 61 (2005) 617.
[3] A.C. Doriguetto, C.H.T. De Paula Silva, D.G. Rando, E.I. Ferreira, J.A. Ellena, Acta
Crystallogr. E59 (2003) O288–O289.
[4] J.H. Loenhout-Rooyackers, J. Veen, Neth. J. Med. 53 (1998) 7–14.
[5] G. Dezso, Arkivoc (2001) 73–80.
[6] T. Helgaker, M. Jaszunski, K. Ruud, Am. Chem. Soc. 99 (1999) 293–352.
[7] G. Schreckenbach, T. Ziegler, Theor. Chem. Acc. 99 (1998) 71–82.
[8] E. Clementi, G. Corongiu, 1995, in: Methods and Techniques in Computational
Chemistry: METECC-95, STEF, Cagliari, Italy, pp. 491–508.
[9] R. Ditchfield, Mol. Phys. 27 (1974) 789–807.
[34] Y.T. Wang, G.M. Tang, Acta Crystallogr. 62 (2006) o1469–o1470.
[35] S.Y. Wang, X.M. Song, L.X. Duan, Acta Crystallogr. E64 (2008) 1880.
[36] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502–16513.
[37] M.A. Palafox, M. Gill, N.J. Nunez, V.K. Rastogi, L. Mittal, R. Sharma, Int. J.
Quantum Chem. 103 (2005) 394–421.