Journal of the American Chemical Society
Page 6 of 8
(2) (a) Dietrich-Buchecker, C. O.; Sauvage, J.-P. A synthetic molecular
can be removed without the knot being able to unravel. Tris(2,6-
pyridinedicarboxamide) ligands were shown to be suitable 31
entanglement synthons of either handedness (chirality
predetermined by choice of asymmetric centers on the ligand
strand). The resulting granny knots are enantiomers (each with six
alternating crossings) that exhibit pronounced equal and opposite
CD spectra. The diastereomeric square knot is topologically
achiral (two non-alternating crossings and four alternating
crossings), but a lack of symmetry in the chemical constitution of
the knot strand means this example is not a true meso-compound.
The synthetic strategy is related to both the chiron approach8 of
conventional asymmetric synthesis and tangle theory,1a,3 a way
that mathematicians understand and (de)construct complex knot
topologies through simpler fragments termed ‘tangles’. The new
approach may prove useful for the preparation of other complex
molecular knots and entangled materials that lack high symmetry
in their crossing patterns.
trefoil knot. Angew. Chem., Int. Ed. Engl. 1989, 28, 189–192. (b) Ashton,
P. R.; Matthews, O. A.; Menzer, S.; Raymo, F. M.; Spencer, N.; Stoddart,
J. F.; Williams, D. J. A template-directed synthesis of a molecular trefoil
knot. Liebigs Ann. Chem. 1997, 2485–2494. (c) Dietrich-Buchecker, C.
O.; Hwang, N. G.; Sauvage, J.-P. A trefoil knot coordinated to two lithium
ions: synthesis and structure. New J. Chem. 1999, 23, 911–914. (d)
Safarowsky, O.; Nieger, M.; Fröhlich, R.; Vögtle, F. A molecular knot
with twelve amide groups—one-step synthesis, crystal structure, chirality.
Angew. Chem. Int. Ed. 2000, 39, 1616−1618. (e) Feigel, M.; Ladberg, R.;
Engels, S.; Herbst-Irmer, R.; Fröhlich, R. A trefoil knot made of amino
acids and steroids. Angew. Chem. Int. Ed. 2006, 45, 5698−5702. (f) Guo,
J.; Mayers, P. C.; Breault, G. A.; Hunter, C. A. Synthesis of a molecular
trefoil knot by folding and closing on an octahedral coordination template.
Nat. Chem. 2010, 2, 218–220. (g) Barran, P. E.; Cole, H. L.; Goldup, S.
M.; Leigh, D. A.; McGonigal, P. R.; Symes, M. D.; Wu, J. Y.; Zengerle,
M. Active metal template synthesis of a molecular trefoil knot. Angew.
Chem., Int. Ed. 2011, 50, 12280−12284. (h) Ponnuswamy, N.; Cougnon,
F. B. L.; Clough, J. M.; Pantoş, G. D.; Sanders, J. K. M. Discovery of an
organic trefoil knot. Science 2012, 338, 783–785. (i) Prakasam, T.; Lusi,
M.; Elhabiri, M.; Platas-Iglesias, C.; Olsen, J.-C.; Asfari, Z.; Cianférani-
Sanglier, S.; Debaene, F.; Charbonnière, L. J.; Trabolsi, A. Simultaneous
self assembly of a [2]catenane, a trefoil knot, and a solomon link from a
simple pair of ligands. Angew. Chem. Int. Ed. 2013, 125, 10140–10144. (j)
Ayme, J.-F.; Gil-Ramírez, G.; Leigh, D. A.; Lemonnier, J.-F.;
Markevicius, A.; Muryn, C. A.; Zhang, G. Lanthanide template synthesis
of a molecular trefoil knot. J. Am. Chem. Soc. 2014, 136, 13142–13145.
(k) Prakasam, T.; Bilbeisi, R. A.; Lusi, M.; Olsen, J.-C.; Platas-Iglesias,
C.; Trabolsi, A. Postsynthetic modification of cadmium-based knots and
links. Chem. Commun. 2016, 52, 7398–7401. (l) Zhang, L.; August, D. P.;
Zhong, J.; Whitehead, G. F. S.; Vitorica-Yrezabal, I. J.; Leigh, D. A.
Molecular trefoil knot from a trimeric circular helicate. J. Am. Chem. Soc.
2018, 140, 4982–4985. (m) Cougnon, F. B. L.; Caprice, K.; Pupier, M.;
Bauzá, A.; Frontera, A. A strategy to synthesize molecular knots and links
using the hydrophobic effect. J. Am. Chem. Soc. 2018, 140, 12442–12450.
(3) Adams, C. C. The Knot Book: An Elementary Introduction to the
Mathematical Theory of Knots, American Mathematical Society,
Providence, RI, 2004.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI. Synthetic procedures and
NMR, MS, CD, UV/Vis data and molecular models (PDF).
AUTHOR INFORMATION
Corresponding Author
Correspondence to: david.leigh@manchester.ac.uk
Notes
The authors declare no competing financial interests.
(4) (a) Ayme, J.-F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.;
Rissanen, K.; Schultz, D. A synthetic molecular pentafoil knot. Nat.
Chem. 2011, 4, 15–20. (b) Ayme, J.-F.; Beves, J. E.; Leigh, D. A.;
McBurney, R. T.; Rissanen, K.; Schultz, D. Pentameric circular iron(II)
double helicates and a molecular pentafoil knot. J. Am. Chem. Soc. 2012,
134, 9488–9497. (c) Ponnuswamy, N.; Cougnon, F. B. L.; Pantoş, G. D.;
Sanders, J. K. M. Homochiral and meso figure eight knots and a Solomon
link. J. Am. Chem. Soc. 2014, 136, 8243–8251. (d) Marcos, V. Stephens,
A. J.; Jaramillo-Garcia, J.; Nussbaumer, A. L.; Woltering, S. L.; Valero,
A.; Lemonnier, J.-F.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Allosteric
initiation and regulation of catalysis with a molecular knot. Science 2016,
352, 1555–1559. (e) Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J.-
F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Braiding a
molecular knot with eight crossings. Science 2017, 355, 159–162. (g)
Cougnon, F. B. L. Tight embrace in a molecular knot with eight crossings.
Angew. Chem. Int. Ed. 2017, 56, 4918–4919. (h) Kim, D. H.; Singh, N.;
Oh, J.; Kim, E.-H.; Jung, J.; Kim, H.; Chi, K.-W. Coordination-driven
self-assembly of a molecular knot comprising sixteen crossings. Angew.
Chem. Int. Ed. 2018, 57, 5669–5673. (i) Leigh, D. A.; Lemonnier, J.-F.;
Woltering, S. L. Comment on “Coordination-driven self-assembly of a
molecular knot comprising sixteen crossings”. Angew. Chem. Int. Ed.
2018, 57, 12212–12214. (j) Zhang, L.; Lemonnier, J.-F.; Acocella, A.;
Calvaresi, M.; Zerbetto, F.; Leigh, D. A. Effects of knot tightness at the
molecular level. Proc. Natl. Acad. Sci. USA, published online 25 Jan 2019.
(5) (a) Carina, R. F.; Dietrich-Buchecker, C. O.; Sauvage, J.-P.
Molecular composite knots. J. Am. Chem. Soc. 1996, 118, 9110–9116. (b)
Danon, J. J.; Leigh, D. A.; Pisano, S.; Valero, A.; Vitorica-Yrezabal, I. J.
A Six-Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and
a Molecular Granny Knot. Angew. Chem. Int. Ed. 2018, 57, 13833–13837.
(c) Zhang, L.; Stephens, A. J.; Nussbaumer, A. L.; Lemonnier, J.-F.;
Jurček, P.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Stereoselective synthesis
of a composite knot with nine crossings. Nat. Chem. 2018, 10, 1083–1088.
(6) Marenda, M.; Orlandini, E.; Micheletti, C. Discovering privileged
topologies of molecular knots with self-assembling models. Nat. Commun.
2018, 9, 3051.
ACKNOWLEDGMENT
We thank the Engineering and Physical Sciences Research
Council (EPSRC; EP/P027067/1), the EU (Marie Curie Individual
Postdoctoral Fellowship to FS; EC 746993) and the School of
Chemistry Mass Spectrometry Service Centre for high-resolution
mass spectrometry. We are grateful to Guzman Gil-Ramírez and
Gen Zhang for preliminary studies on this general concept, David
August for assistance with the DOSY experiments and Joakim
Halldin Stenlid for modeling studies. DAL is a Royal Society
Research Professor.
REFERENCES
(1) (a) Fielden, S. D. P.; Leigh, D. A.; Woltering, S. L. Molecular
knots. Angew. Chem. Int. Ed. 2017, 56, 11166–11194. For other reviews
on molecular knots, see: (b) Fenlon, E. E. Open problems in chemical
topology. Eur. J. Org. Chem. 2008, 5023–5035. (c) Beves, J. E.; Blight, B.
A.; Campbell, C. J.; Leigh, D. A.; McBurney, R. T. Strategies and tactics
for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher
order links. Angew. Chem. Int. Ed. 2011, 50, 9260–9327. (d) Forgan, R.
S.; Sauvage, J.-P.; Stoddart, J. F. Chemical topology: complex molecular
knots, links, and entanglements. Chem. Rev. 2011, 111, 5434–5464. (e)
Amabilino, D. B.; Sauvage, J.-P. The beauty of knots at the molecular
level. Top. Curr. Chem. 2012, 323, 107–126. (f) Ayme, J.-F.; Beves, J. E.;
Campbell, C. J.; Leigh, D. A. Template synthesis of molecular knots.
Chem. Soc. Rev. 2013, 42, 1700–1712. (g) Horner, K. E.; Miller, M. A.;
Steed, J. W.; Sutcliffe, P. M. Knot theory in modern chemistry. Chem.
Soc. Rev. 2016, 45, 6432–6448. (h) Sauvage, J.-P. From chemical
topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed.
2017, 56, 11080–11093. (i) Pairault, N.; Niemeyer, J. Chiral mechanically
interlocked molecules
– Applications of rotaxanes, catenanes and
molecular knots in stereoselective chemosensing and catalysis. Synlett
2018, 29, 689–698.
(7) The interwoven grid strategy used for knots was originally used in
the synthesis of a Solomon link, see Beves, J. E.; Danon, J. J.; Leigh, D.
ACS Paragon Plus Environment