482
Organometallics 2000, 19, 482-489
Ch em istr y of Ha lf-Sa n d w ich Com p ou n d s of Zir con iu m :
Evid en ce for th e F or m a tion of th e Novel a n sa
Ca tion ic-Zw itter ion ic Com p lex
[Zr (η:η-C5H4CMe2C6H4Me-p)(µ-MeB(C6F 5)3)]+[MeB(C6F 5)3]-
J . Sassmannshausen†
Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.
Received J une 29, 1999
The compound [Zr(η-C5H4CMe2C6H4Me-p)Cl3(dme)] (1) has been prepared. Methylation
affords the compound [Zr(η-C5H4CMe2C6H4Me-p)Me3] (2), and benzylation of 1 yields [Zr-
(η-C5H4CMe2C6H4Me-p)(CH2Ph)3] (3). Reaction of 2 with [Ph3C]+[B(C6F5)4]- at -60 °C gives
the ansa complex [Zr(η:η-C5H4CMe2C6H4Me-p)Me2]+[B(C6F5)4]- (4a ), which has been char-
acterized by 1D and 2D NMR spectroscopy. Reaction of 2 with an excess (1.5 equiv) of B(C6F5)3
yields not only the ansa complex [Zr(η:η-C5H4CMe2C6H4Me-p)Me2]+[MeB(C6F5)3]- (4b) but
also the novel cationic zwitterionic ansa complex [Zr(η:η-C5H4CMe2C6H4Me-p)(µ-MeB-
(C6F5)3)]+[MeB(C6F5)3]- (5). The dynamic behavior of complexes 4b and 5 was extensively
studied by NMR spectroscopy. Reaction of 3 with [Ph3C]+[B(C6F5)4]- at -60 °C yields the
ansa complex [Zr(η:η-C5H4CMe2C6H4Me-p)(CH2Ph)2]+[B(C6F5)4]- (6), containing σ-bound
benzyl ligands.
In tr od u ction
solid-state structure of [Zr(η-C5H3(SiMe3)2-1,3)(η-tolu-
ene)Me2]+. Recently, Rausch12,17 has reported the 16-
electron ansa complex [Zr(η:η-C5Me4CH2CH2C6H5)Me2]+-
[B(C6F5)4]- and used this complex as a model for styrene
polymerization. In this model the cationic complex [Zr-
(η:η-C5Me4CH2CH2C6H5)Me2]+ is considered to be the
resting state for styrene polymerization; the incoming
monomer displaces the coordinated phenyl ring and
subsequently inserts into the metal-carbon bond (see
Scheme 1).
Competitive complexation to the metal of the tethered
phenyl ring and the phenyl ring attached to the growing
chain can be expected, since other cationic half-
sandwich complexes of zirconium are known18 in which
the benzyl moiety is coordinated in an η3 and η7 fashion,
respectively.
To investigate the coordination mode of the benzyl
moiety and the pendant phenyl group, the compound
[Zr(η-C5H4CMe2C6H4Me-p)(CH2Ph)3] (3) was prepared.
Here, the methyl group in the para position of the
tethered phenyl ring serves as an NMR probe.
Since Rausch’s cation [Zr(η:η-C5Me4CH2C6H4Me-p)-
Me2]+ formally has the same electronic configuration as
the neutral zirconocene compound [Zr(η-C5R5)2Me2] (R
) H, Me), we sought to investigate the possibility of the
formation of zwitterionic complexes similar to the well-
known metallocene complexes [Zr(η-C5R5)2Me(µ-Me)B-
(C6F5)3] (R ) H, Me).19,20 For this purpose the compound
[Zr(η-C5H4CMe2C6H4Me-p)Me3] (2) was prepared.
Cationic zirconocene complexes are of great interest
as catalysts for hydrogenation,1 isomerization,2 and
especially olefin polymerization reactions.3-11 The donr-
free 14-electron [Zr(η-C5H5)2R]+ cation is believed to be
an active species in Ziegler-Natta type olefin polym-
erization. However, these species are extremely reactive
and have not been isolated.
The half-sandwich complexes [M(η-Cp′)R3] (Cp′ )
C5H5, substituted Cp; M ) Ti, Zr, Hf) have received less
attention, although they are used as precursors for the
catalytic polymerization of styrene12 and propene.13
Baird et al. have demonstrated the formation of arene
adducts [M(η-C5Me5)Me2(η-arene)]+ (arene ) benzene,
toluene, m- and p-xylene, anisole, styrene, mesitylene;
M ) Ti, Zr, Hf).14,15 Bochmann et al.16 reported the
† Present address: Max-Planck Institut fu¨r Kohlenforschung, Kaiser-
Wilhelm-Platz 1, D-45470 Mu¨lheim an der Ruhr, Germany. E-mail:
sassy1@gmx.de. Fax: (+49)208-3062980.
(1) Qian, Y.; Li, G.; Huang, Y. J . Mol. Catal. 1989, 54, L 19.
(2) Qian, Y.; Lu, J .; Xu, W. J . Mol. Catal. 1986, 34, 31.
(3) Bochmann, M. J . Chem. Soc., Dalton Trans. 1996, 225-270.
(4) Kaminsky, W.; Arndt, M. Adv. Polym. Sci. 1995, 127, 144-187.
(5) Aulbach, M.; Ku¨ber, F. Chem. Uns. Z. 1994, 28, 197-208.
(6) Brintzinger, H.-H.; Fischer, D.; Mu¨hlhaupt, R.; Rieger, B.;
Waymouth, R. Angew. Chem. 1995, 107, 1255-1383.
(7) Guram, A. S.; J ordan, R. F. In Comprehensive Organometallic
Chemistry, 2nd ed.; Pergamon: Oxford, U.K., 1995; Vol. 4.
(8) J ordan, R. F. Adv. Organomet. Chem. 1991, 32, 325-387.
(9) Ushioda, T.; Green, M. L. H.; Haggitt, J .; Yan, X. J . Organomet.
Chem. 1996, 518, 155-166.
(10) Mo¨hring, P. C.; Vlachakis, N.; Grimmer, N. E.; Coville, N. J . J .
Organomet. Chem. 1994, 483, 159-166.
(11) Britovsek, G. J . P.; Gibson, V. C.; Wass, D. F. Angew. Chem.,
Int. Ed. 1999, 38, 428-447.
(15) Gillis, D. J .; Quyoum, R.; Tudoret, M. J .; Wang, Q.; J eremic,
D.; Roszak, A. W.; Baird, M. C. Organometallics 1996, 15, 3600-3605.
(16) Bochmann, M.; Robinson, O. B.; Lancaster, S. J .; Hursthouse,
M. B.; Coles, S. J . Organometallics 1995, 14, 2456-2462.
(17) Blais, M. S.; Chien, J . C. W.; Rausch, M. D. Organometallics
1998, 17, 3775-3783.
(12) Flores, J . C.; Wood, J . S.; Chien, J . C. W.; Rausch, M. D.
Organometallics 1996, 15, 4944-4950.
(13) Sassmannshausen, J .; Bochmann, M.; Ro¨sch, J .; Lige, D. J .
Organomet. Chem. 1997, 548, 23-28.
(14) Gillis, D. J .; Tudoret, M. J .; Baird, M. C. J . Am. Chem. Soc.
1993, 115, 2543-2545.
(18) Pellecchia, C.; Immirzi, A.; Pappalardo, D.; Peluso, A. Orga-
nometallics 1994, 13, 3773-3775.
10.1021/om990499+ CCC: $19.00 © 2000 American Chemical Society
Publication on Web 01/28/2000