480
The decrease of the guest LUMO facilitates the charge transfer interaction between the other terminal
chromophore (phenanthrene). Thus, the aromatic ester terminal plays an important role not only in the
increase of the contact area with the guest but also in facilitating the charge transfer interaction.
In conclusion, we demonstrated sandwich-type arrangement of donor–acceptor–acceptor (DAA) both
in 3·TCNQ and 4·TCNB in the crystalline state. It is a clear demonstration that not only the layered
arrangement of the donor–acceptor–donor (DAD) but also DAA sandwich-type arrangement gives stable
intermolecular complexes in the crystalline state.
References
1. (a) Zimmerman, S. C. In Bioorganic Chemistry Frontiers; Dugas, H., Ed.; Springer-Verlag: Berline, Heidelberg, 1991; Vol.
2, pp. 33–71. (b) Chen, C.-W.; Whitlock, H. W. J. Am. Chem. Soc. 1978, 100, 4921–4922.
2. (a) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525–5534. (b) Adams, H.; Carver, F. J.; Hunter, C. A.;
Morales, J. C.; Seward, E. M. Angew. Chem,. Int. Ed. Engl. 1996, 35, 1542–1544. (c) Hamilton, A. D.; Van Eugen, D. J. Am.
Chem. Soc. 1987, 109, 5035–5036.
3. Foster, R. Organic Charge–Transfer Complexes; Academic Press: New York, 1969.
4. (a) Zimmerman, S. C.; VanZyl, C. M.; Hamilton, G. S. J. Am. Chem. Soc. 1989, 111, 1373–1381. (b) Harmata, M.; Barnes,
C. L. Tetrahedron Lett. 1990, 31, 1825–1828; ibid J. Am. Chem. Soc. 1990, 112, 5655–5657. (c) Sijbesma, R. B.; Kentgens,
A. P. M.; Lutz, E. T. G.; van der Maas, J. H.; Nolte, R. J. M. J. Am. Chem. Soc. 1993, 115, 8999–9005 (d) D’Souza, L. J.;
Maitra, U. J. Org. Chem. 1996, 61, 9494–9502. (e) Mink, D.; Deslongchamps, G. Tetrahedron Lett. 1996, 37, 7035–7038.
5. (a) Allwood, B. L.; Colguhoun, H. M.; Doughty, S. M.; Kohuke, F. H.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J.;
Zarzycki, R.; J. Chem. Soc., Chem. Commun. 1987, 1054–1058. (b) Lamsa, M.; Suorasa, T.; Pursiainen, J.; Huuskonen, J.;
Rissanen, K. J. Chem. Soc., Chem. Commun. 1996, 1443–1444.
6. Kurebayashi, H.; Sakaguchi, M.; Okajima, T.; Usui, S.; Haino, T.; Fukazawa, Y. Tetrahedron Lett. 1999, 40, 5545–5548.
7. (a) Kurebayashi, H.; Mine, T.; Harada, K.; Usui, S.; Okajima, T.; Fukazawa, Y. Tetrahedron 1998, 54, 13495–13504. (b)
Kleinpeter, E.; Gabler, M.; Schroth, W. Monatshefte Chem. 1988, 119, 233–246.
8. X-Ray structural analysis of 3·TCNQ and 4·TCNB: MXC-3 diffractometer, graphite monochromated Mo-Kα, structure
solved by direct method and refined with the least-squares method against F (Sir97). Complex 32·TCNQ3 complex: brown
prisms, space group Pb21a, orthorhombic, a=15.557(1), b=17.218(1), c=29.998(1) Å, V=8035.3(1) Å3, Z=4, 8729 measured,
8000 were observed (F>3σ (F)). R=0.089, wR2=0.082; Complex 42·TCNB3: orange prisms, space group P21/c, monoclinic,
a=16.341(1), b=13.104(1), c=18.190(1) Å, b=93.30(2)°, V=3904(1) Å3, Z=2, 9897 measured, 7482 were observed (F>3σ
(F)). R=0.072, wR2=0.065.
9. (a) Rebek Jr., J. Science 1987, 235, 1478–1484. (b) Jorgensen, W. L.; Severance, D. L. J. Am. Chem. Soc. 1990, 112,
4768–4774. (c) Hobza, P.; Selzle, H. L.; Schlag, E. W. J. Am. Chem. Soc. 1994, 116, 3500–3506. (d) Kim, E.; Paliwal, S.;
Wilcox, C. S. J. Am. Chem. Soc. 1998, 120, 11192–11193.
10. Only a few sandwich-type layered complexes deviating from a 1:1 (D:A) have been reported. See, for an example of
DAAAD: Harms, R.; Keller, H. J.; Nothe, D.; Wehe, D. Acta Cryst. 1982, B38, 2838–2841.
11. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley: New York 1976; pp. 23–32.