Communication
ChemComm
3 B. Sillman, A. N. Bade, P. K. Dash, B. Bhargavan, T. Kocher, S. Mathews,
H. Su, G. D. Kanmogne, L. Y. Poluektova and S. Gorantla, Nat. Commun.,
2018, 9, 443.
4 T. Zhou, H. Su, P. Dash, Z. Lin, B. L. D. Shetty, T. Kocher, A. Szlachetka,
B. Lamberty, H. S. Fox and L. Poluektova, Biomaterials, 2018, 151, 53–65.
5 D. Singh, J. McMillan, J. Hilaire, N. Gautam, D. Palandri, Y. Alnouti,
H. E. Gendelman and B. Edagwa, Nanomedicine, 2016, 11, 1913–1927.
30 day period. Such sustained release formulations could minimize
variant pharmacokinetic profiles and maintain effective drug con-
centrations at cellular and tissue reservoirs of infection.
To determine whether sustained intracellular CBV-TP from
ProTide formulations would translate into improved antiretroviral
activity, MDMs were challenged with HIV-1ADA for up to 30 days
after a single 8 h treatment with 100 mM of ABC equivalent. HIV-1
reverse transcriptase (RT) activity and p24 antigen expression were
assessed in infectious supernatants and adherent MDMs on day 10
post-infection. As shown in Fig. 3A and C, complete viral inhibition
was observed for up to 15 days for NM1ABC. At day 20, 91% viral
inhibition was recorded that gradually decreased to 83% inhibition
at day 30. HIV-1p24 antigen staining showed that NM2ABC
protected MDM from infection with viral breakthrough at day 30.
Of significance, full viral inhibition was observed for 30 days after
treatment with NM3ABC. In contrast, minimal protection against
viral infection was observed with native ABC at all time points.
Comparisons of antiviral efficacy of NM3ABC were then assessed to
determine the lowest drug concentration required for long-term
MDM protection against viral infection. As shown in Fig. 3B and D,
50 mM NM3ABC afforded complete viral inhibition for up to 30 days,
while a single 8 h treatment with 25 mM or 10 mM NM3ABC inhibited
viral replication by greater than 90% at day 30 post drug treatment.
These results paralleled prolonged high intracellular CBV-TP levels
for NM3ABC compared to ABC, NM1ABC or NM2ABC.
´
6 D. Guo, T. Zhou, M. Araınga, D. Palandri, N. Gautam, T. Bronich,
Y. Alnouti, J. McMillan, B. Edagwa and H. E. Gendelman, JAIDS,
J. Acquired Immune Defic. Syndr., 2017, 74, e75–e83.
7 J. Rautio, N. A. Meanwell, L. Di and M. J. Hageman, Nat. Rev. Drug
Discovery, 2018, DOI: 10.1038/nrd.2018.46 [Epub ahead of print].
8 K. M. Huttunen, H. Raunio and J. Rautio, Pharmacol. Rev., 2011, 63, 750–771.
9 J. Balzarini, S. Aquaro, A. Hassan-Abdallah, S. M. Daluge, C. F. Perno
and C. McGuigan, FEBS Lett., 2004, 573, 38–44.
10 C. McGuigan, S. A. Harris, S. M. Daluge, K. S. Gudmundsson, E. W.
McLean, T. C. Burnette, H. Marr, R. Hazen, L. D. Condreay, L. Johnson,
E. De Clercq and J. Balzarini, J. Med. Chem., 2005, 48, 3504–3515.
11 C. McGuigan, K. G. Devine, T. J. O’Connor and D. Kinchington,
Antiviral Res., 1991, 15, 255–263.
12 D. H. Katz, J. F. Marcelletti, L. E. Pope, M. H. Khalil, L. R. Katz and
R. McFadden, Ann. N. Y. Acad. Sci., 1994, 724, 472–488.
13 J. F. Marcelletti, Antiviral Res., 2002, 56, 153–166.
14 C. Piantadosi, C. J. Marasco, Jr., S. L. Morris-Natschke, K. L. Meyer,
F. Gumus, J. R. Surles, K. S. Ishaq, L. S. Kucera, N. Iyer and C. A. Wallen,
et al., J. Med. Chem., 1991, 34, 1408–1414.
15 D. Cahard, C. McGuigan and J. Balzarini, Mini-Rev. Med. Chem.,
2004, 4, 371–381.
16 S. Kandil, J. Balzarini, S. Rat, A. Brancale, A. D. Westwell and
C. McGuigan, Bioorg. Med. Chem. Lett., 2016, 26, 5618–5623.
17 R. D. Hanson, P. A. Hohn, N. C. Popescu and T. J. Ley, Proc. Natl.
Acad. Sci. U. S. A., 1990, 87, 960–963.
18 G. Birkus, N. Kutty, G. X. He, A. Mulato, W. Lee, M. McDermott and
T. Cihlar, Mol. Pharmacol., 2008, 74, 92–100.
A pilot in vivo study in rats was conducted with NM3ABC.
Peripheral blood mononuclear cells were recovered from whole
blood and the intracellular CBV-TP levels measured at day 7
(Table S2, ESI†). Reduced CBV-TP levels are explained, in part, by the
rapid degradation of ProTides or slow cleavage of phosphoramide
intermediates in rodents that precedes triphosphate formation.33
In conclusion, we posit that LASER ART can overcome
challenges of ARV adherence and biodistribution. In support of
this idea, M1ABC, M2ABC and M3ABC ProTides were synthesized.
NM3ABC nanoparticles exhibited improved MDM drug uptake,
sustained retention and antiretroviral activities for up to one month.
We posit that this work is a significant step forward for the
management and prevention of HIV-1 infection.
19 T. N. Kakuda, Clin. Ther., 2000, 22, 685–708.
20 W. A. Lee, G. X. He, E. Eisenberg, T. Cihlar, S. Swaminathan, A. Mulato
and K. C. Cundy, Antimicrob. Agents Chemother., 2005, 49, 1898–1906.
21 R. L. Mackman, A. S. Ray, H. C. Hui, L. Zhang, G. Birkus, C. G. Boojamra,
M. C. Desai, J. L. Douglas, Y. Gao, D. Grant, G. Laflamme, K. Y. Lin, D. Y.
Markevitch, R. Mishra, M. McDermott, R. Pakdaman, O. V. Petrakovsky,
J. E. Vela and T. Cihlar, Bioorg. Med. Chem., 2010, 18, 3606–3617.
22 N. Gautam, Z. Lin, M. G. Banoub, N. A. Smith, A. Maayah, J. McMillan,
H. E. Gendelman and Y. Alnouti, J. Pharm. Biomed. Anal., 2018, 153,
248–259.
23 T. Zhou, Z. Lin, P. Puligujja, D. Palandri, J. Hilaire, M. Arainga,
N. Smith, N. Gautam, J. McMillan, Y. Alnouti, X. Liu, B. Edagwa and
H. E. Gendelman, Nanomedicine, 2018, 13, 871–885.
24 Y. Liu, K. Li, J. Pan, B. Liu and S. S. Feng, Biomaterials, 2010, 31, 330–338.
25 Z. Lin and H. E. Gendelman, in Encyclopedia of AIDS, ed. T. J. Hope,
M. Stevenson and D. Richman, Springer New York, New York, NY,
2016, pp. 1–10, DOI: 10.1007/978-1-4614-9610-6_220-1.
26 J. Xu, S. Zhang, A. Machado, S. Lecommandoux, O. Sandre, F. Gu
and A. Colin, Sci. Rep., 2017, 7, 4794.
The research was supported by the University of Nebraska
Foundation and the National Institutes of Health grants R01
MH104147, P01 DA028555, R01 NS36126, P01 NS31492, 2R01
NS034239, P01 MH64570, P30 MH062261, P30 AI078498, and
R01 AG043540.
27 D. P. Gnanadhas, P. K. Dash, B. Sillman, A. N. Bade, Z. Lin,
D. L. Palandri, N. Gautam, Y. Alnouti, H. A. Gelbard, J. McMillan,
R. L. Mosley, B. Edagwa, H. E. Gendelman and S. Gorantla, J. Clin.
Invest., 2017, 127, 857–873.
28 P. Puligujja, S. S. Balkundi, L. M. Kendrick, H. M. Baldridge, J. R. Hilaire,
A. N. Bade, P. K. Dash, G. Zhang, L. Y. Poluektova, S. Gorantla, X. M. Liu,
T. Ying, Y. Feng, Y. Wang, D. S. Dimitrov, J. M. McMillan and
H. E. Gendelman, Biomaterials, 2015, 41, 141–150.
29 B. J. Edagwa and H. E. Gendelman, Nat. Mater., 2018, 17, 114–116.
30 M. Arainga, B. Edagwa, R. L. Mosley, L. Y. Poluektova, S. Gorantla
and H. E. Gendelman, Retrovirology, 2017, 14, 17.
Conflicts of interest
There are no conflicts to declare.
31 M. Arainga, D. Guo, J. Wiederin, P. Ciborowski, J. McMillan and
H. E. Gendelman, Retrovirology, 2015, 12, 5.
32 S. Kumar, A. C. Anselmo, A. Banerjee, M. Zakrewsky and S. Mitragotri,
J. Controlled Release, 2015, 220, 141–148.
33 M. Slusarczyk, M. H. Lopez, J. Balzarini, M. Mason, W. G. Jiang,
S. Blagden, E. Thompson, E. Ghazaly and C. McGuigan, J. Med.
Chem., 2014, 57, 1531–1542.
Notes and references
1 B. Edagwa, J. McMillan, B. Sillman and H. E. Gendelman, Expert
Opin. Drug Delivery, 2017, 14, 1281–1291.
2 R. J. Landovitz, R. Kofron and M. McCauley, Curr. Opin. HIV AIDS,
2016, 11, 122–128.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018