StereoselectiVe Synthesis of 1,4-Disubstituted Buten-4-ols
J. Am. Chem. Soc., Vol. 122, No. 7, 2000 1311
Scheme 4. Stereochemistry of the Allyl Transfera
Scheme 2
Scheme 3
a The absolute configurations (S and R) are shown as R )
CH2CH2Ph.
This is very different from the previously reported intramo-
lecular C-C bond formation reactions between an oxycarbenium
ion and π-nucleophile (CdC),8 in which six- and five-membered
cyclic ethers are obtained via an intramolecular Prins reaction.
In some of these cases, the 2-oxonia [3,3]-sigmatropic rear-
rangement is driven by a subsequent C-C bond-forming
event.8l,m
Based on the considerations outlined above, we performed
additional investigations of the R-selective allylation of alde-
hydes via allyl-transfer reactions of homoallylic alcohols,
derived from aldehydes.
that were not easy to separate. Therefore, there still remains a
great interest in the development of more practical and versatile
methods for the stereoselective synthesis of homoallylic alcohols
of type 6.
Results and Discussion
Allyl Transfer from Benzaldehyde to 3-Phenylpropanal.
First, we expected that 2-methyl-1-phenyl-3-buten-1-ol 3b,
prepared from benzaldehyde and 2-butenylmetal reagents,9
would serve as an allyl donor in the allyl-transfer reactions and
react with 3-phenylpropanal to give the corresponding R-adduct
6i. This is because (i) the benzyl cation 8B is more stable than
8A, (ii) 6i is less hindered than 3b, and (iii) the internal olefin
6i is more stable than the terminal olefin 3b. In view of this,
3a-g were treated with 3-phenylpropanal in the presence of
10 mol % of Sn(OTf)2 in CH2Cl2.
As shown in Table 1, the R-adducts 6h-l were obtained in
moderate yields, together with the byproducts 6b-e (entries
2-5), which were formed in the allyl-transfer reaction of 3b-e
to benzaldehyde liberated from the desired allyl-transfer of 3b-e
Recently, we reported a new method for the R-specific
allylation of aldehydes, in which an allylic unit was transferred
from the homoallylic alcohol 7, derived from a ketone (acetone),
to an aldehyde to give the R-adduct 6 in the presence of Sn-
(OTf)2.7 We proposed a reaction mechanism that proceeds via
an oxycarbenium ion intermediate that undergoes a 2-oxonia
[3,3]-sigmatropic rearrangement, as shown in Scheme 2. We
also suggested that the reaction could be driven toward products
deriving from the most stable cations or those containing
sterically less hindered homoallylic alcohols and/or thermody-
namically more stable olefins.
(4) For example, (a) 2-butenyltributyltin 1a (2-butenylmetal)/Bu2SnCl2
4c (mediator)/25 °C (reaction temperature): Gambaro, A.; Gains, P.; Marton,
D.; Peruzzo, V.; Tagliavini, G. J. Organomet. Chem. 1982, 231, 307. (b)
1a/BuSnCl3 4b/25 °C: Gambaro, A.; Boaretto, A.; Marton, D.; Tagliavini,
G. J. Organomet. Chem. 1984, 260, 255. (c) 1a/4a, 4b, or 4c, and then
HClO4 (4 M)/20 °C: Marton, D.; Tagliavini, G.; Vanzan, N. J. Organomet.
Chem. 1989, 376, 269. (d) 1a/SnCl4 4a/-78 °C: Keck, G. E.; Abbott, D.
E.; Boden, E. P.; Enholm, E. J. Tetrahedron Lett. 1984, 25, 3927. (e) (Z)-
1a/4b/room temperature or 0 °C: Miyake, H.; Yamamura, K. Chem. Lett.
1992, 1369. (f) E-allylic alcohols, Me3SiCl, NaI, H2O, Sn/room tempera-
ture: Kanagawa, K.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1992, 57, 6988.
(g) 1a/AlCl3, i-PrOH/-78 °C: Yamamoto, Y.; Maeda, N.; Maruyama, K.
J. Chem. Soc., Chem. Commun. 1983, 742. (h) 2-butenylmagnesium
chloride/AlCl3/0 °C or room temperature: Yamamoto, Y.; Maruyama, K.
J. Org. Chem. 1983, 48, 1564. (i) 2-butenyllithium/CeCl3/-78 °C: Guo,
B.-S.; Doubleday: W.; Cohen, T. J. Am. Chem. Soc. 1987, 109, 4710. (j)
1a/CoCl2/room temperature: Iqbal, J.; Joseph, S. P. Tetrahedron Lett. 1989,
30, 2421. The degrees of both R-selectivity and E/Z selectivity in each of
these allylations were very variable, and would depend on the structure of
aldehydes, allylic metal reagents, meditators, and the reaction conditions.
(5) Among the various allylation reactions reported, the reaction of allylic
barium compounds is particularly useful, because it always gave R-adducts
selectively without using any mediators. However, the preparation of allylic
barium compounds required the reduction of barium iodide by 2 equiv of
lithium biphenylide: (a) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J.
Am. Chem. Soc. 1991, 113, 8955. (b) Yanagisawa, A.; Habaue, S.; Yasue,
K.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 6130.
(8) Synthesis of tetra- or dihydropyran derivatives: (a) Gambaro, A.;
Boaretto, A.; Marton, D.; Tagliavini, G. J. Organomet. Chem. 1983, 254,
293. (b) Boaretto, A.; Marton, D.; Tagliavini, G. Inorg. Chim. Acta 1983,
77, L153. (c) Gambaro, A.; Furlani, D.; Marton, D.; Tagliavini, G. J.
Organomet. Chem. 1986, 299, 157. (d) Wei, Z. Y.; Li, J. S.; Wang, D.;
Chan, T. H. Tetrahedron Lett. 1987, 28, 3441. (e) Wei, Z. Y.; Wang, D.;
Li, J. S.; Chan, T. H. J. Org. Chem. 1989, 54, 5768. (f) Coppi, L.; Ricci,
A.; Taddei, M. Tetrahedron Lett. 1987, 28, 973. (g) Coppi, L.; Ricci, A.;
Taddei, M. J. Org. Chem. 1988, 53, 911. (h) Mekhalfia, A.; Marko´, E. I.;
Adams, H. Tetrahedron Lett. 1991, 32, 4783. (i) Marko´, I. E.; Mekhalfia,
A. Tetrahedron Lett. 1992, 33, 1799. (j) Marko´, I. E.; Chelle´, F. Tetrahedron
Lett. 1997, 38, 2895. (k) Hoffman, R. W.; Giesen, V.; Fuest, M. Liebigs
Ann. Chem. 1993, 629. (l) Lolkema, L. D. M.; Hiemstra, H.; Semeyn, C.;
Speckamp W. N. Tetrahedron 1994, 50, 7115. (m) Lolkema, L. D. M.;
Semeyn, C.; Hiemstra, H.; Speckamp W. N. Tetrahedron 1994, 50, 7129.
(n) Nishizawa, M.; Shigaraki, T.; Takao, H.; Imagawa, H.; Sugihara, T.
Tetrahedron Lett. 1999, 40, 1153. Synthesis of 3-acyltetrahydrofuran
derivatives: (o) Hopkins, M. H.; Overman, L. E. J. Am. Chem. Soc. 1987,
109, 4748. (p) Hopkins, M. H.; Overman, L. E.; Rishton, G. M. J. Am.
Chem. Soc. 1991, 113, 5354.
(9) For selective preparation of anti-γ-adducts, we employed the methods
using 2-butenylchromium compounds reported by Hiyama and Nozaki, and
Heathcock; (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem.
Soc. 1977, 99, 3179. (b) Buse, C. T.; Heathcock, C. H. Tetrahedron Lett.
1978, 1685. (c) Hiyama, T.; Kimura, K.; Nozaki, H. Tetrahedron Lett. 1981,
22, 1037. (d) Hiyama, T.; Okude, Y.; Kimura, K.; Nozaki, H. Bull. Chem.
Soc. Jpn. 1982, 55, 561.
(6) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. Tetrahedron 1989, 45,
1067.
(7) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J. Am. Chem.
Soc. 1998, 120, 6609.