CuO Nanoparticles Catalyzed C-N, C-O, and C-S Cross-Coupling
Reactions: Scope and Mechanism
Suribabu Jammi, Sekarpandi Sakthivel, Laxmidhar Rout, Tathagata Mukherjee,
Santu Mandal, Raja Mitra, Prasenjit Saha, and Tharmalingam Punniyamurthy*
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
ReceiVed October 31, 2008
CuO nanoparticles have been studied for C-N, C-O, and C-S bond formations via cross-coupling
reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles,
phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH,
Cs2CO3, and K2CO3 at moderate temperature. The procedure is simple, general, ligand-free, and efficient
to afford the cross-coupled products in high yield.
Introduction
on the use of iron-12 and nickel-based13 catalytic systems for
this purpose. Most of the systems involve a homogeneous
process, and the ligand chelated with the metal plays a crucial
role in the catalysis.
Nanomaterials containing high surface area and reactive
morphologies have been studied as effective catalysts for organic
synthesis.8k,11k,14 Furthermore, the nanomaterial catalyzed reac-
tions provide the advantages of high atom efficiency, simplified
isolation of product, and easy recovery and recyclability of the
catalysts. In preliminary communication, we reported the
catalysis of CuO nanoparticles for the cross-coupling reactions
of amines8k and thiols11k with iodobenzene. The reactions were
simple, general, and ligand-free, and the CuO nanoparticles were
recyclable. These features led us to further study the scope of
The formation of C-N, C-O, and C-S bonds is prevalent
in numerous compounds that are of biological, pharmaceutical,
and material interest (Figure 1).1 One of the most common
synthetic methods for their preparation is the copper-assisted
classic Ullmann reaction. However, these reactions often require
harsh conditions such as high temperature (>200 °C) and
stoichiometric or greater amount of copper reagent, which on
scale-up leads to problem of waste disposal.2 To overcome these
limitations, much attention has been recently focused to develop
catalytic systems to reduce the environmental impact (E-factor)
of the processes.3,4 Palladium5-7 and copper8-11 complexes
containing electron-rich ligands have been studied considerably
for the cross-coupling of nitrogen, oxygen, and sulfur nucleo-
philes with aryl halides. Subsequently, few studies have focused
(5) For C-N couplings, see: (a) Kosugi, M.; Kameyama, M.; Migita, T. Chem.
Lett. 1983, 927. (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609.
(c) Ali, M. H.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2560. (d) Huang, X.;
Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem.
Soc. 2003, 125, 6653. (e) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. J.
Org. Chem. 2004, 69, 6504. (f) Beletskaya, I. P.; Bessmertnykh, A. G.; Averin,
A. D.; Denat, F.; Guilard, R. Eur. J. Org. Chem. 2005, 261. (g) Wolfe, J. P.;
Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65,
1158. (h) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1144. (i) Dai,
Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X. J. Org. Chem. 2006, 71, 3928.
(j) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043. (k) Ikawa, T.;
Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129,
13001.
(6) For C-O couplings, see: (a) Palucki, M.; Wolfe, J. P.; Buchwald, S. L.
J. Am. Chem. Soc. 1997, 119, 3395. (b) Mann, G.; Hartwig, J. F. Tetrahedron
Lett. 1997, 38, 8005. (c) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig,
J. F. J. Am. Chem. Soc. 1999, 121, 3224. (d) Aranyos, A.; Old, D. W.; Kiyomori,
A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
4369. (e) Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J. F. J. Am. Chem. Soc.
2000, 122, 10718. (f) Torraca, K. E.; Huang, X.; Parrish, C. A.; Buchwald, S. L.
J. Am. Chem. Soc. 2001, 123, 10770.
(1) (a) Negwar, M. In Organic-Chemical Drugs and Their Synonyms: (An
International SurVey), 7th ed.; Akademie: Berlin, 1994. (b) Evano, G.; Blanchard,
N.; Toumi, M. Chem. ReV. 2008, 108, 3054. (c) Corbet, J.-P.; Mignani, G. Chem.
ReV. 2006, 106, 2651. (d) Blaser, H.-U.; Indolese, A.; Naud, F.; Nettekoven,
U.; Schnyder, A. AdV. Synth. Catal. 2004, 346, 1583.
(2) (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382. (b) Hassan, J.;
Sevignon, M.; Gozzi, C.; Schulz, C.; Lemaire, M. Chem. ReV. 2002, 102, 1359.
(c) Frlan, R.; Kikelj, D. Synthesis 2006, 2271. (d) Lindley, J. Tetrahedron 1984,
40, 1433. (e) Sawyer, J. S. Tetrahedron 2000, 56, 5045.
(3) (a) Sheldon, R. A. Pure Appl. Chem. 2000, 72, 1233. (b) Punniyamurthy,
T.; Rout, L. Coord. Chem. ReV. 2008, 252, 134.
(4) (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (b) Farina, V.
AdV. Synth. Catal. 2004, 346, 1553. (c) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-
F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (d) Ley, S. V.; Thomas,
A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (e) Kunz, K.; Scholz, U.; Ganzer,
D. Synlett 2003, 2428. (f) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem.
ReV. 2004, 248, 2337. (g) Correa, A.; Mancheno, O. G.; Bolm, C. Chem. Soc.
ReV. 2008, 37, 1108. (h) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 674. (i) Paine, A. J. J. Am. Chem. Soc. 1987, 109, 1496.
10.1021/jo8024253 CCC: $40.75
Published on Web 01/27/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 1971–1976 1971