Chemistry Letters 2000
161
The reaction reported here can be widely applied for the
synthesis of biaryls and heterobiaryls. Further studies on the
coupling reactions of diaryldialkyltins with transition metal
catalysts are now under way.
Financial support by a Grant-in-Aid for Scientific
Research on Priority Areas from the Ministry of Education,
Science, Sports and Culture, Japan (11119256) is gratefully
acknowledged.
References and Notes
1
For reviews, see, a) E. Negishi, Acc. Chem. Res., 15, 340
(1982). b) F. Naso and G. Marchese, in "Carbon-carbon
bond formation involving organic halides and transition
metal compounds," in "The Chemistry of Functional
Groups, Supplement D," ed by S. Patai and Z. Rappoport,
John Wiley & Sons Ltd., New York (1983), p 1353. c) D.
W. Knight, in "Coupling Reactions Between sp2 Carbon
Center," in "Comprehensive Organic Synthesis," ed by B.
M. Trost and I. Fleming, Pergamon Press, London (1991),
Vol. 3, p. 499.
Interestingly, the reaction of bis(4-bromo-3-
thienyl)dimethyltin (6)8 with Cu(NO3)2·3H2O produced 4,4'-
dibromo-3,3'-bithiophene (7)9,10 in 76% yield (Scheme 2).
Similarly, the reaction of bis(4-bromo-3-furyl)dimethyltin and
bis(3-bromo-2-thienyl)dimethyltin (8 and 10)8 with
Cu(NO3)2·3H2O afforded 4,4'-dibromo-3,3'-bifuran and 3,3'-
dibromo-2,2'-bithiophene (9 and 11)9,10 in 72 and 52% yields,
respectively. These reactions gave selectively the coupling
products without loss of the bromo substituents.
2
For examples, see, a) D. J. Cram, M. deGrandpre, C. B.
Knobler, and K. N. Trueblood, J. Am. Chem. Soc., 106,
3286 (1984). b) B. Krische, J. Hellberg, and C. Lilja, J.
Chem. Sco., Chem. Commun., 1987, 1476. c) M. Iyoda,
H. Otsuka, K. Sato, N. Nisato, and M. Oda, Bull. Chem.
Soc. Jpn., 63, 80 (1990). d) V. Penalva, J. Hassan, L.
Lavenot, C. Gozzi, and M. Lemaire, Tetrahedron Lett., 39,
2559 (1998). e) N. Leadbeater and S. M. Resouly,
Tetrahedron Lett., 40, 4243 (1999).
3
For reviews, see, a) P. E. Fanta, Synthesis, 1974, 9. b) W.
E. Bachmann and R. A. Hoffman, Org. React., 2, 224
(1962).
4
5
6
M. Iyoda, S. M. H. Kabir, A. Vorasingha, Y. Kuwatani,
and M. Yoshida, Tetrhedron Lett., 39, 5393 (1998).
a) J. K. Stille, Angew. Chem., Int. Ed. Engl., 25, 508
(1986). b) T. N. Mitchell, Synthesis, 1992, 803.
a) G. Ghosal, G. P. Luke, and K. S. Kyler, J. Org. Chem.,
52, 4296 (1987). b) R. L. Beddoes, T. Cheeseright, J.
Wang, and P. Quayle, Tetrahedron Lett., 36, 283 (1995).
c) E. Piers, E. J. McEachern, and M. A. Romero,
Tetrahedron Lett., 37, 1173 (1996). d) E. Piers and M. A.
Romero, J. Am. Chem. Soc., 118, 1215 (1996). e) R. Durr,
S. Cossu, V. Lucchini, and O. De Lucchi, Angew. Chem.,
Int. Ed. Engl., 36, 2805 (1997).
We anticipated that the first step of the reaction of diaryl-
dimethyltins with Cu(NO3)2·3H2O involves an electron-trans-
fer process and transmetallation to afford an organocopper(II)
species and dimethyltin dinitrate as depicted in Scheme 3.
Since the reaction of a mixture of 1a (0.5 mmol) and 6 (0.5
mmol) with Cu(NO3)2·3H2O (2.2 mmol) in THF (2 ml) at
room temperature for 1 h produced 3a (26%) and 7 (25%) with
the corresponding cross-coupling product (30%), the interme-
diates for biaryls may be radical-like species which dimerizes
to produce the coupling products.
7
8
9
a) L. Alcaraz and R. J. K. Taylor, Synlett, 1997, 791. b) E.
Shirakawa, Y. Murota, Y. Nakao, and T. Hiyama, Synlett,
1997, 1143.
The compounds (6, 10, and 8) were prepared starting from
3,4- and 2,3-dibromothiophenes and 3,4-dibromofuran in
63, 59, and 65% yields, respectively.
S. Gronowitz, Acta Chem. Scand., 15, 1393 (1961).
10 S. M. H. Kabir, M. Miura, S. Sasaki, G. Harada, Y.
Kuwatani, M. Yoshida, and M. Iyoda, Heterocycles, in
press.