Communication
ChemComm
Goldsmith, S. Woodward, J. Gimeno, S. Gladiali and D. Ramazzotti, 12 For the related Cu-catalysed hydride transfer to chiral propargylic
Chem. Commun., 2000, 2433; (c) K. E. Murphy and A. H. Hoveyda,
J. Am. Chem. Soc., 2003, 125, 4690; (d) H. Malda, A. W. van Zijl, L. A.
Arnold and B. L. Feringa, Org. Lett., 2001, 3, 1169; (e) A. O. Larsen,
W. Leu, C. N. Oberhuber, J. E. Campbell and A. H. Hoveyda, J. Am.
acceptors under substrate control, see: (a) C. Deutsch, B. H. Lipshutz
and N. Krause, Angew. Chem., Int. Ed., 2007, 46, 1650; (b) C. Zhong,
Y. Sasaki, H. Ito and M. Sawamura, Chem. Commun., 2009, 5850;
(c) C. Deutsch, B. H. Lipshutz and N. Krause, Org. Lett., 2009, 11, 5010.
Chem. Soc., 2004, 126, 11130; ( f ) P. J. Goldsmith, S. J. Teat and 13 The only other known asymmetric allylic reduction protocol is a
S. Woodward, Angew. Chem., Int. Ed., 2005, 44, 2235.
4 Mg-Based nucleophiles, selected examples: (a) M. van Klaveren,
palladium-catalysed hydride transfer from ammonium formate:
(a) T. Hayashi, H. Iwamura, M. Naito, Y. Matsumoto, Y. Uozumi,
M. Miki and K. Yanagi, J. Am. Chem. Soc., 1994, 116, 775;
(b) T. Hayashi, M. Kawatsura, H. Iwamura, Y. Yamaura and Y. Uozumi,
Chem. Commun., 1996, 1767; (c) K. Fuji, M. Sakurai, T. Kinoshita and
T. Kawabata, Tetrahedron Lett., 1998, 39, 6323; (d) M. Kawatsura,
Y. Uozumi, M. Ogasawara and T. Hayashi, Tetrahedron, 2000, 56,
2247.
¨
E. S. Persson, A. del Villar, D. M. Grove, J.-E. Backvall and G. van Koten,
Tetrahedron Lett., 1995, 36, 3059; (b) K. Tissot-Croset, D. Polet and
A. Alexakis, Angew. Chem., Int. Ed., 2004, 43, 2426; (c) S. Tominaga,
Y. Oi, T. Kato, D. K. An and S. Okamoto, Tetrahedron Lett., 2004, 45, 5585;
´
(d) F. Lopez, A. W. van Zijl, A. J. Minnaard and B. L. Feringa, Chem.
Commun., 2006, 409; (e) K. B. Selim, Y. Matsumoto, K.-I. Yamada and
K. Tomioka, Angew. Chem., Int. Ed., 2009, 48, 8733.
5 Al-Based nucleophiles, selected examples: (a) Y. Lee, K. Akiyama,
14 For the racemic variant of this process, see: T. N. T. Nguyen,
N. O. Thiel, F. Pape and J. F. Teichert, Org. Lett., 2016, 18, 2455.
D. G. Gillingham, M. K. Brown and A. H. Hoveyda, J. Am. Chem. Soc., 15 (a) J. K. Park, H. H. Lackey, M. D. Rexford, K. Kovnir, M. Shatruk and
2008, 130, 446; (b) J. A. Dabrowski, F. Gao and A. H. Hoveyda, J. Am.
Chem. Soc., 2011, 133, 4778.
6 B-Based nucleophiles, review: (a) R. Shintani, Synthesis, 2016, 1087;
D. T. McQuade, Org. Lett., 2010, 12, 5008; (b) J. K. Park, H. H. Lackey,
B. A. Ondrusek and D. T. McQuade, J. Am. Chem. Soc., 2011, 133,
2410; (c) J. K. Park and D. T. McQuade, Synthesis, 2012, 1485.
selected examples: (b) H. Ohmiya, U. Yokobori, Y. Makida and 16 For full details, see the ESI†.
M. Sawamura, J. Am. Chem. Soc., 2010, 132, 2895; (c) H. Ohmiya, 17 The absolute configuration of (S)-2 was established by comparison
N. Yokokawa and M. Sawamura, Org. Lett., 2010, 12, 2438; (d) A. M.
Whittaker, R. P. Rucker and G. Lalic, Org. Lett., 2010, 12, 3216;
(e) R. Shintani, K. Takatsu, M. Takeda and T. Hayashi, Angew. Chem.,
Int. Ed., 2011, 50, 8656; ( f ) Y. Shido, M. Yoshida, M. Tanabe,
of the sign of the specific rotation with the value reported in the
literature: H. Kiuchi, D. Takahashi, K. Funaki, T. Sato and S. Oi, Org.
Lett., 2012, 14, 4502. The same absolute configuration could be
established for a variety of other substrates; see the ESI† for details.
H. Ohmiya and M. Sawamura, J. Am. Chem. Soc., 2012, 134, 18573; 18 Cyclopentyl-derived alkene 9g has been prepared via allylic substitu-
(g) K. Hojoh, Y. Shido, H. Ohmiya and M. Sawamura, Angew. Chem.,
Int. Ed., 2014, 53, 4954.
tion in the presence (80% ee) and absence (88% ee) of copper catalysts,
see: D. Grassi and A. Alexakis, Adv. Synth. Catal., 2015, 357, 3171.
´
˜
´
7 Li-Based nucleophiles, selected examples: (a) M. Perez, M. Fananas- 19 (a) L. B. Delvos, D. J. Vyas and M. Oestreich, Angew. Chem., Int. Ed.,
Mastral, P. H. Bos, A. Rudolph, S. R. Harutyunyan and B. L. Feringa,
2013, 52, 4650; (b) L. B. Delvos, A. Hensel and M. Oestreich, Synthesis,
2014, 2957; (c) L. B. Delvos and M. Oestreich, Synthesis, 2015, 924;
(d) A. Hensel and M. Oestreich, Chem. – Eur. J., 2015, 21, 9062.
˜
´
´
Nat. Chem., 2011, 3, 377; (b) M. Fananas-Mastral, M. Perez, P. H. Bos,
A. Rudolph, S. R. Harutyunyan and B. L. Feringa, Angew. Chem.,
Int. Ed., 2012, 51, 1922; (c) S. Guduguntla, V. Hornillos, R. Tessier, 20 For related copper-catalysed stereoconvergent processes via different
˜
´
M. Fananas-Mastral and B. L. Feringa, Org. Lett., 2016, 18, 252.
8 Zr-Based nucleophiles, selected examples: (a) H. Zhou, E. Rideau,
M. Sidera and S. P. Fletcher, Nature, 2015, 517, 351; (b) M. Sidera
and S. P. Fletcher, Chem. Commun., 2015, 51, 5044.
mechanisms, see for example: (a) C. A. Falciola and A. Alexakis, Angew.
Chem., Int. Ed., 2007, 46, 2619; (b) H. Ito, S. Kunii and M. Sawamura, Nat.
Chem., 2010, 2, 972; (c) J.-B. Langlois, D. Emery, J. Mareda and
A. Alexakis, Chem. Sci., 2012, 3, 1062; (d) J. K. Park and D. T.
McQuade, Angew. Chem., Int. Ed., 2012, 51, 2717; (e) Y. Shido,
M. Yoshida, M. Tanabe, H. Ohmiya and M. Sawamura, J. Am. Chem.
Soc., 2012, 134, 18573; ( f ) M. Takeda, K. Takatsu, R. Shintani and
T. Hayashi, J. Org. Chem., 2014, 79, 2354.
9 For reviews on copper hydride chemistry, see: (a) A. Jordan, G. Lalic
and J. P. Sadighi, Chem. Rev., 2016, 116, 8318; (b) B. H. Lipshutz, in
Copper-Catalysed Asymmetric Synthesis, ed. A. Alexakis, N. Krause and
S. Woodward, Wiley-VCH, Weinheim, 2014; (c) C. Deutsch, N. Krause
¨
and B. H. Lipshutz, Chem. Rev., 2008, 108, 2916; (d) S. Rendler and 21 (a) S. Rendler, O. Plefka, B. Karatas, G. Auer, R. Frohlich, C. Mu¨ck-
M. Oestreich, Angew. Chem., Int. Ed., 2007, 46, 498.
Lichtenfeld, S. Grimme and M. Oestreich, Chem. – Eur. J., 2008,
14, 11512; (b) T. Gathy, D. Peeters and T. Leyssens, J. Organomet.
Chem., 2009, 694, 3943; (c) T. Vergote, F. Nahra, A. Merschaert,
O. Riant, D. Peeters and T. Leyssens, Organometallics, 2014, 33,
1953.
10 For a proposed asymmetric allylic reduction as an elementary step
of a hydroamination protocol, see: S. Zhu, N. Niljianskul and
S. L. Buchwald, Nat. Chem., 2016, 8, 144.
11 For a proposed racemic allylic reduction as a part of a reduction of
Morita–Baylis–Hillman adducts, see: R. T. H. Linstadt, C. A. Peterson, 22 At this stage, a stereoconvergent process via a s–p–s allylic rear-
C. I. Jette, Z. V. Boskovic and B. H. Lipshutz, Org. Lett., 2017, 19, 328.
rangement cannot be ruled out.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017