In summary, we have developed an efficient protocol for
the rapid trapping of methyl iodide with an excess of an
alkenyltributylstannane, by rapid sp3–sp2(alkenyl) coupling.22 This
method provides a firm chemical basis for the synthesis of short-
lived 11CH3-labeled PET tracers with a 1-methylalkene unit.
Retinoids (1) and their artificial derivatives are involved in
important biological signal pathways as agonists targeting nuclear
RAR/RXR receptors23 and the prototypical G protein-coupled
receptor, rhodopsin.24 Squalene (3), a triterpenoid containing six
isoprene units, is a major metabolite derived from mevalonic acid
and is a key intermediate in the production of important bioactive
steroids. PET studies using the corresponding 11C-labeled tracers
would contribute to the possibility of in vivo biomolecular studies.
The synthesis of the above-mentioned PET tracers and their use
in molecular imaging will be reported in due course.
K. Na˚gren, A. Rimland and H. Sva¨rd, J. Nucl. Med., 1987, 28, 1037–
1040; (c) G. Antoni, T. Kihlberg and B. La˚ngstro¨m, in: Handbook of
Radiopharmaceuticals, ed. M. J. Welch and C. S. Redvanly, Wiley, West
Sussex, 2003, pp. 141–194.
6 (a) J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508–524; (b) V.
Farina, V. Krishnamurthy and W. J. Scott, Org. React., 1997, 50, 1–657;
(c) P. Espinet and A. M. Echavarren, Angew. Chem., Int. Ed., 2004, 43,
4704–4734.
7 For reviews on organostannanes, see: A. G. Davies, Organotin Chem-
istry (2nd edn), Wiley-VCH, Weinheim, 2004.
8 (a) M. Suzuki, K. Kato, R. Noyori, Yu. Watanabe, H. Takechi, K.
Matsumura, B. La˚ngstro¨m and Y. Watanabe, Angew. Chem., Int. Ed.
Engl., 1996, 35, 334–336; (b) H. Takechi, K. Matsumura, Yu. Watanabe,
K. Kato, R. Noyori, M. Suzuki and Y. Watanabe, J. Biol. Chem., 1996,
271, 5901–5906; (c) M. Bjo¨rkman, Y. Andersson, H. Doi, K. Kato, M.
Suzuki, R. Noyori, Y. Watanabe and B. La˚ngstro¨m, Acta Chem. Scand.,
1998, 52, 635–640; (d) Yu. Watanabe, K. Matsumura, H. Takechi, K.
Kato, H. Morii, M. Bjo¨rkman, B. La˚ngstro¨m, R. Noyori, M. Suzuki
and Y. Watanabe, J. Neurochem., 1999, 72, 2583–2592; (e) R. Noyori,
Angew. Chem., Int. Ed., 2002, 41, 2008–2022.
9 The synthesis of PET tracers is rather different from standard organic
syntheses. The reaction involves the trapping of an extremely small
amount of 11CH3I (approximately 100 nmol level containing 12CH3I)
with a large amount (mg) of reacting substrate. Therefore, we set up
the reaction using an excess of alkenylstannane, with respect to methyl
iodide.
10 (a) K. Menzel and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 3718–3719;
(b) H. Tang, K. Menzel and G. C. Fu, Angew. Chem., Int. Ed., 2003,
42, 5079–5082.
Acknowledgements
This work was supported in part by a Grant-in-Aid for Creative
Scientific Research (No. 13NP0401) of the Ministry of Education,
Culture, Sports, Science, and Technology (MEXT) of Japan. M.W.
thanks JSPS. Incorporation of 11C was performed in a PET
laboratory at Hamamatsu photonics K.K.
11 The increased amount of P(o-tolyl)3 was not effective when Cs2CO3
was used instead of K2CO3, as confirmed using 4e.
12 S. P. H. Mee, V. Lee and J. E. Baldwin, Angew. Chem., Int. Ed., 2004,
43, 1132–1136.
Notes and references
13 Typical procedure (Table 1, entry 5, condition D): In a dry Schlenk tube
(10 mL), Pd2(dba)3 (4.6 mg, 5.0 lmol), P(o-tolyl)3 (6.1 mg, 20 lmol),
CuBr (2.9 mg, 20 lmol), and CsF (7.6 mg, 50 lmol) were placed
under Ar. After addition of DMF (500 lL), the mixture was stirred
for 5 min at room temperature followed by successive additions of
solutions of stannane 4e (148 mg, 400 lmol) in DMF (500 lL) and
methyl iodide (12.5 lL, 0.80 M DMF solution, 10 lmol). After stirring
at 60 ◦C for 5 min, the mixture was cooled rapidly in an ice bath.
After addition of diethyl ether (1 mL), the mixture was loaded onto
a short column of silica gel (0.5 g) and then eluted with diethyl ether
(ca. 1 mL), followed by addition of n-nonane (50 lL, 0.10 M DMF
solution, 5.0 lmol) as an internal standard. The resulting solution
was analyzed by GLC (Shimadzu GC-2010 instrument equipped with
a flame ionization detector; capillary column: GL Science TC-1701,
60 m × 0.25 mm i.d., film thickness of stationary phase = df = 0.25 lm;
carrier gas: He; flow rate: 0.4 mL min−1; injector temperature: 280 ◦C;
dete◦ctor temperature: 280 ◦C; col◦umn temperature: initial 80 ◦C, final
100 C; temperature gradient: +5 C min−1, from 10 to 14 min); yield of
1-methylcyclohexene (5e): 99% based on starting CH3I; retention time:
12.2 min (cf. n-nonane: 16.1 min).
14 T. Allman and R. G. Goel, Can. J. Chem., 1982, 60, 716–722.
15 (a) D. A. White and M. M. Baizer, Tetrahedron Lett., 1973, 3597–3600;
(b) E. Go´mez-Bengoa, J. M. Cuerva, C. Mateo and A. M. Echavarren,
J. Am. Chem. Soc., 1996, 118, 8553–8565; (c) D. H. Valentine, Jr. and
J. H. Hillhouse, Synthesis, 2003, 317–334; (d) D. Basavaiah, A. J. Rao
and T. Satyanarayana, Chem. Rev., 2003, 103, 811–891.
16 (a) S. Enomoto, H. Wada, S. Nishida, Y. Mukaida, M. Yanaka, H.
Takita, Jpn. Kokai Tokkyo Koho, JP 53144552, 1978; (b) F. Paul, J. Patt
and J. F. Hartwig, J. Am. Chem. Soc., 1994, 116, 5969–5970; (c) F. Paul,
J. Patt and J. F. Hartwig, Organometallics, 1995, 14, 3030–3039.
17 C. A. Tolman, Chem. Rev., 1977, 77, 313–348.
1 (a) M. Suzuki, H. Doi, M. Bjo¨rkman, Y. Andersson, B. La˚ngstro¨m,
Y. Watanabe and R. Noyori, Chem.–Eur. J., 1997, 3, 2039–2042;
(b) M. Suzuki, R. Noyori, B. La˚ngstro¨m and Y. Watanabe, Bull.
Chem. Soc. Jpn., 2000, 73, 1053–1070; (c) M. Suzuki, H. Doi, K.
Kato, M. Bjo¨rkman, B. La˚ngstro¨m, Y. Watanabe and R. Noyori,
Tetrahedron, 2000, 56, 8263–8273; (d) M. Bjo¨rkman, H. Doi, B. Resul,
M. Suzuki, R. Noyori, Y. Watanabe and B. La˚ngstro¨m, J. Labelled
Compd. Radiopharm., 2000, 43, 1327–1334; (e) T. Hosoya, M. Wakao,
Y. Kondo, H. Doi and M. Suzuki, Org. Biomol. Chem., 2004, 2, 24–27;
(f) M. Suzuki, H. Doi, T. Hosoya, B. La˚ngstro¨m and Y. Watanabe,
Trends Anal. Chem., 2004, 23, 595–607. See also the applications by
other groups based on our method: [p-11C-methyl]MADAM: (g) J.
Tarkiainen, J. Vercouillie, P. Emond, J. Sandell, J. Hiltunen, Y. Frangin,
D. Guilloteau and C. Halldin, J. Labelled Compd. Radiopharm., 2001,
44, 1013–1023; [11C]toluene: (h) M. Gerasimov, J. Logan, R. A. Ferrieri,
R. D. Muller, D. Alexoff and S. L. Dewey, Nucl. Med. Biol., 2002,
29, 607–612, and references therein; 5-[11C]methyl-6-nitroquipazine:
(i) J. Sandell, M. Yu, P. Emond, L. Garreau, S. Chalon, K. Na˚gren,
D. Guilloteau and C. Halldin, Bioorg. Med. Chem. Lett., 2002, 12,
3611–3613, and references therein (j) J. Madsen, P. Merachtsaki, P.
Davoodpour, M. Bergstro¨m, B. La˚ngstro¨m, K. Andersen, C. Thomsen,
L. Martiny and G. M. Knudsen, Bioorg. Med. Chem., 2003, 11, 3447–
3456; 5-11C-methyl-A-85380: (k) Y. Iida, M. Ogawa, M. Ueda, A.
Tominaga, H. Kawashima, Y. Magata, S. Nishiyama, H. Tsukada,
T. Mukai and H. Saji, J. Nucl. Med., 2004, 45, 878–884; (3-ethyl-
2-[11C]methyl-6-quinolinyl)(cis-4-methoxycyclohexyl)methanone: (l) Y.
Huang, R. Narendran, F. Bischoff, N. Guo, Z. Zhu, S.-A. Bae, A. S.
Lesage and M. Laruelle, J. Med. Chem., 2005, 48, 5096–5099.
2 (a) J. S. Fowler, A. P. Wolf, J. R. Barrio, J. C. Mazziotta and M. E.
Phelps, in: Positron Emission Tomography and Autoradiography, ed.
M. E. Phelps, J. C. Mazziotta and H. R. Schelbert, Raven Press,
New York, 1986, ch. 9–11; (b) B. La˚ngstro¨m and R. F. Dannals, in:
Principles of Nuclear Medicine (2nd edn), ed. H. N. Wagner, Z. Szabo
and J. W. Buchanan, W. B. Saunders Publishing, Philadelphia, 1995,
sect. 1, ch. 11; (c) J. S. Fowler and A. P. Wolf, Acc. Chem. Res., 1997,
30, 181–188.
3 (a) M. Bergstro¨m, A. Grahne´n and B. La˚ngstro¨m, Eur. J. Clin.
Pharmacol., 2003, 59, 357–366; (b) G. Lappin and R. C. Garner, Nat.
Rev. Drug Discovery, 2003, 2, 233–240.
4 C. M. L. West, T. Jones and P. Price, Nat. Rev. Cancer, 2004, 4, 457–469.
5 (a) R. A. Ferrieri and A. P. Wolf, Radiochim. Acta, 1983, 34, 69–83;
(b) B. La˚ngstro¨m, G. Antoni, P. Gullberg, C. Halldin, P. Malmborg,
18 (a) V. Farina, S. Kapadia, B. Krishnan, C. Wang and L. S. Liebeskind,
J. Org. Chem., 1994, 59, 5905–5911; (b) X. Han, B. M. Stoltz and E. J.
Corey, J. Am. Chem. Soc., 1999, 121, 7600–7605; (c) A. L. Casado and
P. Espinet, Organometallics, 2003, 22, 1305–1309.
´
19 A. Garc´ıa Mart´ınez, J. Os´ıo Barcina, M. R. Colorado Heras and A. De
Frensno Cerezo, Organometallics, 2001, 20, 1020–1023.
20 (a) R. E. Maleczka, Jr., W. P. Gallagher and I. Terstiege, J. Am. Chem.
Soc., 2000, 122, 384–385; (b) W. P. Gallagher, I. Terstiege and R. E.
Maleczka, Jr., J. Am. Chem. Soc., 2001, 123, 3194–3204.
21 PET tracer synthesis (Table 1, entry 12, condition D): [11C]Methyl
iodide was prepared from [11C]CO2 by reduction with LiAlH4, followed
414 | Org. Biomol. Chem., 2006, 4, 410–415
This journal is
The Royal Society of Chemistry 2006
©