Honcharenko et al.
directed therapeutics and diagnostics.2,3,7 Recently, we have
synthesized novel 1′,2′-bridged oxetane nucleoside [1-(1′,3′-
anhydro-â-D-psicofuranosyl) nucleoside] in which the sugar
moiety is locked into a unique North-East type of conforma-
tion1,8 in the sugar pseudorotational cycle.31 The Tm of the
oxetane-modified-AON/RNA hybrid with fully natural phos-
phodiester backbone in both strands drops by ∼5-6 °C/
oxetane-T or ∼3 °C/oxetane-C modification, whereas the Tm
of oxetane-A and -G modified-AON/RNA hybrids8f do not show
any loss of stabilities compared to those of the native counter-
parts. It has been shown that any loss of the thermodynamic
stability of the heteroduplexes could, however, be regained by
the introduction of the appropriately tethered nontoxic DPPZ
(dipyridophenazine) group11,12 at the 3′-end, which also gives
additional stability against 3′-exonucleases similar to that of the
phosphorothioates AONs.1,8c The oxetane-modified appropri-
ately tethered 3′-DPPZ mixmer AON/RNA hybrids were found
to be excellent substrates for RNase H promoted cleavage.8 The
4 nt gap after each oxetane modification in the AON made this
gap resistant to RNase H promoted cleavage. However, the
RNase H promoted cleavage of the phosphodiester bonds
beyond the resistant 4 nt site in a mixmer with larger gaps (>4
nt) were very comparable to that of the native. The Michaelis-
Menten kinetics of the RNase H cleavage showed that Vmax and
Km increase with increase in the number (one to three) of T/C/A
modifications (with the exception of G, which is slightly lower
than that of the native) in the AONs, indicating higher catalytic
activity and lower enzyme binding affinity of the oxetane-
modified AON/RNA hybrids.1,8e In the â-D-LNA modified
AONs, on the other hand, requires a gap size of 8-10 nt in
order to get back the effective RNase H cleavage of the target.9
It is likely that use of a lengthy unmodified phosphodiester
oligonucleotide gaps in the gapmer AONs could be harmful in
view of their endonuclease susceptibility.10 The resistance to
the endonuclease promoted cleavage of these oxetane-modified
molecules was proportional to the number of the oxetane-
modified nucleotides per AON molecule: single modification
gave 2-fold protection to the cleavage, and double and triple
modification gave 4-fold protection compared to that of the
native phosphodiester oligonucleotide.1,8c
(5) (a) Tarkoy, M.; Bolli, M.; Schweizer, B.; Leumann, C. HelV. Chim.
Acta 1993, 76, 481. (b) Altman, K.-H.; Kesselring, R.; Francotte, E.; Rihs,
G. Tetrahedron Lett. 1994, 35, 2331. (c) Siddiqui, M. A.; Ford, H.; George,
C.; Marquez, V. E. Nucleosides Nucleotides 1996, 15, 235 (d) Marquez,
V. E.; Siddiqui, M. A.; Ezzitouni, A.; Russ, P.; Wang, J.; Wanger, W. R.;
Matteucci, D. M. J. Med. Chem. 1996, 39, 3739 (e) Obika S.; Nanbu D.,
Hari Y., Morio, K.; In, Y.; Ishida, T.; Imanishi, T. Tetrahedron Lett. 1997,
38, 8735 (f) Koshkin, A. A.; Singh, S. K.; Nielson, P., Rajwanshi, V. K.;
Kumar R.; Meldgaard, M.; Wengel, J. Tetrahedron 1998, 54, 3607 (g)
Wang, G.; Giradet, J. L.; Gunic, E. Tetrahedron 1999, 55, 7707 (h). Wengel,
J. Acc. Chem. Res. 1999, 32, 301 (i) Sekine M, Kurasawa O.; Shohda, K.;
Seio K.; Wada.; T. J. Org. Chem. 2000, 12, 3571. (j) Morita, K.; Hasegawa,
C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa, T.; Imanishi, T.; Koizumi,
M. Bioorg. Med. Chem. Lett. 2002, 12, 73 (k) Imanishi, T.; Obika, S. Chem.
Commun. 2002, 16, 1653. (l) Wang, G. Tetrahedron Lett. 1999, 40, 6343.
(m) Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Bioorg.
Med. Chem. Lett. 1999, 9, 385. (n) Steffens, R.; Leumann, C. HelV. Chim.
Acta 1997, 80, 2426. (o) Nielsen, P.; Petersen, M.; Jacobsen, J. P J. Chem.
Soc., Perkin Trans. 1 2000, 3706 (p) Christiensen, N. K.; Andersen, A. K.
L.; Schultz, T. R.; Nielsen, P. Org. Biomol. Chem. 2003, 1, 3738. (q)
Wengel, J.; Peterson, M. Trends Biotechnol. 2003, 21, 74. (r) Kvaerno, L.;
Wengel, J. J. Org. Chem. 2001, 66, 5498.(s) Babu, B. R.; Raunak; Poopeiko,
N. E.; Juhl, M.; Bond, A. D.; Parmar, V. S.; Wengel, J. Eur. J. Org. Chem.
2005, 11, 2297 (t) Obika, S.; Sekiguchi, M.; Somjing, R.; Imanishi, T.
Angew. Chem., Int. Ed. 2005, 44, 1944.
(12) Opalinska, J. B.; Kalota, A.; Rodriquez, L.; Henningson, H.; Gifford,
L. K.; Lu, P.; Jen, K.-Y.; Paradeepkumar, P. I.; Barman, J.; Kim, T. K.;
Swider, C.; Chattopadhyaya, J.; Gewirtz, A. M. Nucleic Acids Res. 2004,
32, 5791.
(13) (a) Maag, H.; Schmidt, B.; Rose, S. J. Tetrahedron Lett. 1994, 35,
6449. (b) Sorensen, M. D.; Petersen, M.; Wengel, J. Chem. Commun. 2003,
2130.
(14) (a) Fathi, R.; Huang, Q.; Coppola, G.; Delaney, W.; Teasdale, R.;
Krieg, A. M.; Cook, A. F. Nucleic Acids Res. 1994, 22, 5416. (b) Ozaki,
H.; Nakamura, A.; Arai, M.; Endo, M.; Sawai, H. Bull. Chem. Soc. Jpn.
1995, 68, 1981. (c) Nomura, Y.; Haginoya, N.; Ueno, Y.; Matsuda, A.
Bioorg. Med. Chem. Lett. 1996, 6, 2811. (d) Horn, T.; Chaturvedi, S.;
Balasubramaniam, T. N.; Letsinger, R. L. Tetrahedron Lett. 1996, 37, 743.
(e) Manoharan, M.; Ramasamy, K. S.; Mohan, V.; Cook, P. D. Tetrahedron
Lett. 1996, 37, 7675. (f) Linkletter, B. A.; Bruice, T. C. Bioorg. Med. Chem.
Lett. 1998, 8, 1285. (g) Cuenoud, B.; Casset, F.; Hu¨sken, D.; Natt, F.; Wolf,
R. M.; Altmann, K.-H.; Martin, P.; Moser, H. E. Angew. Chem., Int. Ed.
1998, 37, 1288. (h) Prakash, T. P.; Ask P.; Lesnik, E.; Mohan, V.; Tereshko,
V.; Egli, M.; Manoharan, M. Org. Lett. 2004, 6, 1971.
(6) The S-type conformationally constrained nucleoside destabilizes the
AON/RNA duplex even though it can activate RNase H promoted cleavage.
Kvaerno, L.; Wightman, R. H.; Wengel, J. J. Org. Chem. 2001, 66, 5106.
(7) (a) Petersen, M.; Wengel, J. Trends. Biotechnol. 2003, 21, 74. (b)
Venkatesan, N.; Kim, S. J.; Kim, B H. Curr. Med. Chem. 2003, 10, 1973.
(c) Scherer, L. J.; Rossi, J. J. Nat. Biotechnol. 2003, 21, 1457. (d) Agrawal,
S.; Kandimalla, E. R. Mol. Med. Today 2000, 6, 72.
(8) (a) Pradeepkumar, P. I.; Zamaratski. E.; Foldesi A.; Chattopadhyaya
J. Tetrahedron Lett. 2000, 41, 8601. (b) Pradeepkumar, P. I.; Zamaratski
E.; Foldesi A.; Chattopadhyaya J. J. Chem. Soc., Perkin Trans. 2 2001,
402. (c) Pradeepkumar, P. I.; Chattopadhyaya J. J. Chem. Soc., Perkin Trans.
2 2001, 2074. (d) Boon, E. M.; Barton, J. K.; Pradeepkumar, P. I.; Isaksson,
J.; Petit, C.; Chattopadhyaya, J. Angew. Chem., Int. Ed. 2002, 41, 3402. (e)
Amirkhanov, N. V.; Pradeepkumar, P. I.; Chattopadhyaya, J. J. Chem. Soc.,
Perkin Trans. 2 2002, 976. (f) Pradeepkumar, P. I.; Cheruku, P.; Plash-
kevych, O.; Acharya, P.; Gohil, S.; Chattopadhyaya, J. J. Am. Chem. Soc.
2004, 126, 37, 11484.
(9) (a) Kurreck, J.; Wyszko, E.; Gillen, C.; Erdmann, V. A. Nucleic Acids
Res. 2002, 30, 1911. (b) Braasch, A. D.; Liu, Y.; Corey, D. R. Nucleic
Acids Res. 2002, 30, 5160. (c) Frieden, M.; Christensen, S. M.; Mikkelsen,
N. D.; Rosenbohm, C.; Thrue, C. A.; Westergaard, M.; Hansen, H. F.; Orum,
H.; Koch, T. Nucleic Acids Res. 2003, 31, 6325.
(10) (a) Sands, H.; Gorey-Feret, L. J.; Ho, S. P.; Bao, Y.; Cocuzza, A.
J.; Chidester, D.; Hobbs, F. W. Mol. Pharmacol. 1995; 47, 636. (b) Miyao,
T.; Takakura, Y.; Akiyama, T.; Yoneda, F.; Sezaki, H.; Hashida, M.
Antisense Res. DeV. 1995; 5, 115. (c) Uhlmann, E.; Peyman, A.; Ryte, A.;
Schmidt, A.; Buddecke, E. Methods Enzymol. 2000, 313, 268. (d) Peyman,
A.; Helsberg, M.; Kretzschmar, G.; Mag, M.; Ryte, A.; Uhlmann, E.
AntiViral Res. 1997, 33, 135.
(11) (a) Ossipov, D.; Zamaratski, E.; Chattopadhyaya, J. HelV. Chim.
Acta 1999, 82, 2186. (b) Zamaratski, E.; Ossipov, D.; Pradeepkumar, P. I.;
Amirkhanov, N. V.; Chattopadhyaya, J. Tetrahedron 2001, 57, 593.
(15) (a) Mio, S.; Kumagawa, Y.; Sugai, S. Tetrahedron 1991, 47, 2133.
(b) Sarma, M. S. P.; Megati, S.; Klein, R. S.; Otter, B. A. Nucleosides
Nucleotides 1995, 14, 393. (c) Pradeepkumar, P. I.; Zamaratski, E.; Fo¨ldesi
A.; Chattopadhyaya, J. J. Chem. Soc., Perkin Trans. 2 2001, 402.
(16) Fox, J. J.; Miller, N.; Wempen, I. J. Med. Chem. 1966, 9, 101.
(17) Ikeda, H.; Fernandez, R.; Wilk, A.; Barchi, J. J., Jr.; Huang, X.;
Marquez, V. E. Nucleic Acids Res. 1998, 26, 2237.
(18) Luzzio, F. A.; Menes, M. E. J. Org. Chem. 1994, 59, 7267.
(19) Bar, N. C.; Patra, R.; Achari, B.; Mandal, S. B. Tetrahedron 1997,
53, 4727.
(20) Bera, S.; Nair, V. HelV. Chim. Acta 2000, 83, 1398.
(21) (a) Chiba, J.; Tanaka, K.; Ohshiro, Y.; Miyake, R.; Hiraoka, S.;
Shiro, M.; Shionoya, M. J. Org. Chem. 2003, 68, 331. (b) Karpeisky, A.;
Sweedler, D.; Haeberli, P.; Read, J.; Jarvis, K.; Beigelman, L. Bioorg. Med.
Chem. Lett. 2002, 12, 3345.
(22) Chaix, C.; Molko, D.; Teoule, R. Tetrahedron Lett. 1989, 30, 71.
(23) March, J. AdVanced Organic Chemistry: Reactions, Mechanisms
and Structure, 4th ed.; Wiley: New York, 1992; pp 98-100 and reference
therein.
(24) Singh, S. K.; Kumar, R.; Wengel, J. J. Org. Chem. 1998, 63, 10035.
(25) Rosenbohm, C.; Christensen, S. M.; Sørensen, M. D.; Pedersen, D.
S.; Larsen, L. E.; Wengel, J.; Koch, T. Org. Biomol. Chem. 2003, 1, 655.
(26) Lin, T. S.; Yang, J. H.; Liu, M. C.; Shen, Z. Y.; Cheng, Y. C.;
Prusoff, W. H.; Birnbaum, G. I.; Giziewicz, J.; Ghazzouli, I.; Brankovan,
V.; Feng, J. S.;. Hsiung G. D. J. Med. Chem. 1991, 34, 693.
(27) Vorbru¨ggen, H.; Ho¨fle, G. Chem. Ber. 1981, 114, 1256.
(28) Legorburu, U.; Reese, C. B.; Song, Q. Tetrahedron 1999, 55, 5635.
(29) Staudinger, H.; Meyer, J. HelV. Chim. Acta 1919, 2, 635.
(30) Raunkjaer, M.; Sorensen, Mads D.; Wengel, J. Org. Biomol. Chem.
2005, 3, 130.
(31) Haasnoot, C. A. G.; DeLeeuw, F. A. A. M.; Altona, C. Tetrahedron
1980, 36, 2783 and references therein.
300 J. Org. Chem., Vol. 71, No. 1, 2006