1622
Organometallics 2000, 19, 1622-1624
Din itr ogen Clea va ge Stem m in g fr om a Heter od in u clea r
Niobiu m /Molybd en u m N2 Com p lex: New Nitr id on iobiu m
System s In clu d in g a Nioba zen e Cyclic Tr im er
Daniel J . Mindiola, Karsten Meyer, J ohn-Paul F. Cherry, Thomas A. Baker, and
Christopher C. Cummins*,†
Massachusetts Institute of Technology, Department of Chemistry, Room 2-227,
Cambridge, Massachusetts 02139-4307
Received February 17, 2000
Summary: Preparation of the terminal nitrido anion
-[NNb(N[iPr]Ar)3] and the niobazene trimer {(µ-N)Nb-
(N[iPr]Ar)2}3 (iPr ) CH(CH3)2 or CH(CD3)2, Ar ) 3,5-
C6H3Me2) entails cooperative splitting of dinitrogen upon
reduction of the heterobimetallic paramagnetic dinitro-
Recent work with anionic molybdenum dinitrogen
complexes has shown them to be good nucleophiles, in
that they are smoothly alkylated or silylated at the â
(terminal) nitrogen atom.16-18 For example the anion
[(N2)Mo(N[R]Ar)3]- is converted to Me3SiNNMo(N[R]-
Ar)3 and MeNNMo(N[R]Ar)3 upon reaction with chlo-
rotrimethylsilane and methyl tosylate, respectively.
Furthermore, it has been possible to assemble a variety
of heterodinuclear dinitrogen complexes by reaction of
dinitrogen molybdenum complex anions with various
metal halide (M ) Zr, V, Fe, and U) electrophiles.16,17,19,20
t
gen complex (Ar[R]N)3Mo(µ-N2)Nb(N[iPr]Ar)3 (R ) Bu
or C(CD3)2 CH3).
Dinitrogen gas rarely is employed as the nitrogen
source in the synthesis of molecular nitridometal com-
pounds,1 but recent advances involving well-defined N2-
splitting reactions are improving the outlook for the
direct utilization of molecular nitrogen. Dimolybdenum
systems2-4 have been found to effect N2 splitting in the
absence of added reagents, while certain diniobium and
divanadium systems5-7 also split dinitrogen when used
in conjunction with alkali metals. While dinuclear
dinitrogen complexes represent an emerging theme for
N2-splitting systems,2-6,8-12 thus far the systems in
question have been homobimetallic in nature. The
present work shows that molybdenum and niobium can
be used together to effect the splitting of molecular
nitrogen in a cooperative fashion. Nitridoniobium com-
pounds stemming from this intriguing heterodinuclear
N2-scission process include a niobazene cyclic trimer,
the structure of which provides insight into the bonding
in M3N3 rings (M ) transition metal).13-15
Accordingly, we find that the reaction of the purple
chloroniobium(IV) complex NbCl(N[iPr]Ar)3
with
21
[Na(THF)x][(N2)Mo(N[R]Ar)3]18 or [Mg(THF)2][(N2)Mo-
(N[R]Ar)3]2 provides in high yield (74-78%) the neu-
21
tral, paramagnetic, brown-green N2-bridged complex
(Ar[tBu]N)3Mo(µ-N2)Nb(N[iPr]Ar)3 (2,21 Figure 2).
Complex 2 is characterized by an intense νNN at 1583
cm-1, a value to be compared with that (1548 cm-1) for
the isotopomer prepared from 15N2. While EPR spec-
troscopy (25 °C, toluene) revealed a classic 10-line pat-
tern resulting from coupling to the I ) 9/2 niobium
nucleus 93Nb (100%), no coupling to the spin 5/2
molybdenum nuclei 95Mo and 97Mo (15.92% and 9.55%,
respectively) was resolved.21 The magnitude of the
93Nb coupling was found by simulation to be 99.3 G, a
value typical for niobium(IV) systems of the type
Nb(X)(N[iPr]Ar)3 (X- ) I, Cl).22 Inclusion in the simula-
tion of a 32.0 G coupling to 95/97Mo (this value being
typical for S ) 1/2 molybdenum systems of the type
MoCl2(N[iPr]Ar)3)23 did not lead to resolution of the
molybdenum hyperfine. Thus one cannot conclude that
* To whom correspondence should be addressed. E-mail:
ccummins@mit.edu.
† Alfred P. Sloan Fellow, 1997-2000.
(1) Dehnicke, K.; Stra¨hle, J . Angew. Chem., Int. Ed. Engl. 1992, 31,
955.
(2) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861-863.
(3) Laplaza, C. E.; J ohnson, M. J . A.; Peters, J . C.; Odom, A. L.;
Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J . J . Am. Chem.
Soc. 1996, 118, 8623-8638.
(4) Cummins, C. C. Chem. Commun. 1998, 1777-1786.
(5) Zanotti-Gerosa, A.; Solari, E.; Giannini, L.; Floriani, C.; Chiesi-
Villa, A.; Rizzoli, C. J . Am. Chem. Soc. 1998, 120, 437.
(6) Ferguson, R.; Solari, E.; Floriani, C.; Osella, D.; Ravera, M.; Re,
N.; Chiesi-Villa, A.; Rizzoli, C. J . Am. Chem. Soc. 1997, 119, 10104-
10115.
(13) Plenio, H.; Roesky, H. W.; Noltemeyer, M.; Sheldrick, G. M.
Angew. Chem., Int. Ed. Engl. 1988, 27, 1330.
(14) Holl, M. M. B.; Kersting, M.; Pendley, B. D.; Wolczanski, P. T.
Inorg. Chem. 1990, 29, 1518.
(15) Wheeler, R. A.; Hoffmann, R.; Stra¨hle, J . J . Am. Chem. Soc.
1986, 108, 5381.
(16) O’Donoghue, M. B.; Zanetti, N. C.; Davis, W. M.; Schrock, R.
R. J . Am. Chem. Soc. 1999, 119, 2753.
(7) Clentsmith, G. K. B.; Bates, V. M. E.; Hitchcock, P. B.; Cloke, F.
G. N. J . Am. Chem. Soc. 1999, 121, 10444.
(8) Campazzi, E.; Solari, E.; Floriani, C.; Scopelliti, R. Chem.
Commun. 1998, 2603.
(9) Ferguson, R.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.
Angew. Chem., Int. Ed. Engl. 1993, 32, 396.
(10) Berno, P.; Gambarotta, S. Angew. Chem., Int. Ed. Engl. 1995,
34, 822.
(11) Fryzuk, M. D.; Love, J . B.; Rettig, S. J .; Young, V. G. Science
1997, 275, 1445.
(12) Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.; Love,
J . B.; Seidel, W. W.; Albainati, A.; Koetzle, T. F.; Klooster, W. T.;
Mason, S. A.; Eckert, J . J . Am. Chem. Soc. 1999, 121, 523.
(17) O’Donoghue, M. B.; Davis, W. M.; Schrock, R. R. Inorg. Chem.
1998, 37, 5149.
(18) Peters, J . C.; Cherry, J .-P.; Thomas, J . C.; Baraldo, L.; Mindiola,
D. J .; Davis, W. M.; Cummins, C. C. J . Am. Chem. Soc. 1999, 121,
10053-10067.
(19) O’Donoghue, M. B.; Davis, W. M.; Schrock, R. R.; Reiff, W. M.
Inorg. Chem. 1999, 38, 243.
(20) Odom, A. L.; Arnold, P. L.; Cummins, C. C. J . Am. Chem. Soc.
1998, 120, 5836-5837.
(21) Experimental details are included in the Supporting Informa-
tion.
(22) Mindiola, D. J .; Meyer, K.; Cummins, C. C. Unpublished results.
(23) Tsai, Y.-C.; Meyer, K.; Cummins, C. C. Unpublished results.
10.1021/om000159k CCC: $19.00 © 2000 American Chemical Society
Publication on Web 03/31/2000