Page 7 of 9
Journal of the American Chemical Society
M.; Le Roux, C.; Gaspard-Iloughmane, H.; Dubac, J. Synlett 1994,
complexes of which also have substantial geometric constrains to
undergo -H elimination. Refs. 14h, 15b, and 16b each shows 1
example of 1-chloroadamantane, whose alkyl-metal complexes cannot
undergo -H elimination.
19. Organotin hydrides as reductants: (a) Hanessian, S.; Di Fabio,
R.; Marcoux, J. F.; Prud'homme, M. J. Org. Chem. 1990, 55, 3436–
3438. Examples of photoredox alkyl bromide activation: (b) Zhang, P.;
Le, C.C.; MacMillan, D.W. J. Am. Chem. Soc. 2016, 138, 8084−8087.
(c) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc Chem Res. 2016,
49, 2295–2306.
20. (a) Agapie, T.; Diaconescu, P. L.; Cummins, C. C. J. Am. Chem.
Soc. 2002, 124, 2412–2413. A recent work shows that TiIII can catalyze
reactions involving highly activated C–Cl bonds in -chlorolactams:
(b) Zheng, X.; Dai, X.-J.; Yuan, H.-Q.; Ye, C.-X.; Ma, J.; Huang, P.-
Q. Angew. Chem. Int. Ed. 2013, 52, 3494–3498.
21. A recent example shows that Mn can catalyze the C–B bond
formation of tertiary alkyl chlorides in the presence of EtMgBr: (a)
Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.
Amination of electronically activated, tertiary -chloroamides: (b)
Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters,
J. C.; Fu, G. C. Science 2016, 351, 681–684.
723–724. (c) Bendall, J. G.; Payne, A. N.; Screen, T. E. O.; Holmes, A.
B. Chem. Commun. 1997, 1067−1068. (d) Kelly, B. D.; Lambert, T.
H. J. Am. Chem. Soc. 2009, 131, 13930–13931. (e) Su, J. Y.;
Grünenfelder, D. C.; Takeuchi, K.; Reisman, S. E. Org. Lett. 2018, 20,
4912–4916.
5. For examples, see: (a) Yasuda, M.; Yamasaki, S.; Onishi, Y.;
Baba, A. J. Am. Chem. Soc. 2004, 126, 13690–13691. (b) Reyes, J.R.
and Rawal, V.H. Angew. Chem., Int. Ed. 2016, 55, 3077–3080.
6. For an example, see: Pu, X.; Qi, X.; Ready, J. M. J. Am. Chem.
Soc. 2009, 131, 10364–10365.
7. For examples, see: (a) Quinn, R.K.; Könst, Z.A.; Michalak, S.E.;
Schmidt, Y.; Szklarski, A.R.; Flores, A.R.; Nam, S.; Horne, D.A.;
Vanderwal, C.D.; Alexanian, E.J. J. Am. Chem. Soc. 2016, 138,
696−702. (b) Ozawa,J.; Kanai, M. Org. Lett. 2017, 19, 1430−1433. (c)
Short, M.A.; Blackburn, J.M.; Roizen, J.L. Angew. Chem., Int. Ed.
2018, 57, 296−299. (d) Li, G., Dilger, A.K.; Cheng, P.T.; Ewing, W.R.;
Groves, J.T.; Angew. Chem., Int. Ed. 2018, 57, 1251−1255.
8. For a review on Pd-catalyzed cross coupling involving alkyl
chlorides (1 R–Cl, in most cases), see: Kambe, N.; Iwasakia, T.; Terao,
J. Chem. Soc. Rev. 2011, 40, 4937–4947.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9. For examples, see: (a) Qin, T.; Malins, L. R.; Edwards, J. T.;
Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.;
Yuan, C.; Eastgate, M. D.; Baran P. S. Angew. Chem. Int. Ed. 2017,
56, 260–265. (b) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2014, 136, 10886–10889.
10. For an example, see: Nawrat, C.C.; Jamison, C.R.; Slutskyy, Y.;
MacMillan, D.W.; Overman, L.E. J. Am. Chem. Soc. 2015, 137,
11270–11273.
11. For examples, see: (a) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am.
Chem. Soc. 2014, 136, 1304–1307. (b) Obradors, C.; Martinez, R. M.;
Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 4962–4971. (c) Lo, J. C.;
Kim, D.; Pan, C. M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.;
Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S.
J. Am. Chem. Soc. 2017, 139, 2484–2503.
12. For examples, see: (a) Chu, J. C. K.; Rovis, T. Nature 2016, 539,
272–275. (b) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R.
R. Nature 2016, 539, 268–271.
22. For representative reviews, see: (a) Davis-Gilbert, Z. W.; Tonks,
I. A. Dalton Trans. 2017, 46, 11522-11528. (b) Cuerva, J. M.; Juan, J.
C.; Justicia, J.; Oller-Lòpez, J. L.; Oltra, J. E. Top. Curr. Chem. 2006,
264, 63–91. (c) Streuff, J. Chem. Rec. 2014, 14, 1100–1113. (d) Streuff,
J.; Gansäuer, A. Angew. Chem., Int. Ed. 2015, 54, 14232–14242.
23. For examples, see: (a) Bensari, A.; Renaud, J.-L.; Riant, O. Org.
Lett. 2001, 3, 3863-3865. (b) Hao, W.; Harenberg, J. H.; Wu, X.;
MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2018, 140, 3514–3517. (c)
Leijendekker, L. H.; Weweler, J.; Leuther, T. M.; Streuff, J. Angew.
Chem. Int. Ed. 2017, 56, 6103–6106. (d) Kablaoui, N. M.; Hicks, F. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 4424–4431.
24. For examples, see: (a) Gansäuer, A.; Behlendorf, M.; von
Laufenberg, D.; Fleckhaus, A.; Kube, C.; Sadasivam, D. V.; Flowers
II, R. A. Angew. Chem. Int. Ed. 2012, 51, 4739−4742. (b) Gansäuer,
A.; Hildebrandt, S.; Michelmann, A.; Dahmen, T.; von Laufenberg, D.;
Kube, C.; Fianu, G. D.; Flowers II, R. A. Angew. Chem. Int. Ed. 2015,
54, 7003–7006. (c) Zhao, Y.; Weix, D. J. J. Am. Chem. Soc. 2015, 137,
3237-3240.
25. Luo, Y.-R., Comprehensive Handbook of Chemical Bond
Energies. CRC Press: Boca Raton, 2007.
26. Nii, S.; Terao, J.; Kambe, N. J. Org. Chem. 2004, 69, 573–576.
27. Nomura K., Liu J. in Organometallic Reactions and
Polymerization. Lecture Notes in Chemistry, Osakada K. Ed. vol 85, pp
51–88. Springer: Berlin, 2014.
28. (a) Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.;
Lin, S. J. Am. Chem. Soc. 2017, 139, 12141-12144. (b) Zhang, Y.-Q.;
Vogelsang, E.; Qu, Z.-W.; Grimme, S.; Gansäuer, A. Angew.
Chem. Int. Ed. 2017, 56, 12654–12657.
29. (a) Lopchuk, J. M.; Fjelbye, K.; Kawamata, Y.; Malins, L. R.;
Pan, C.-M.; Gianatassio, R.; Wang, J.; Prieto, L.; Bradow, J.; Brandt,
T. A.; Collins, M. R.; Elleraas, J.; Ewanicki, J.; Farrell, W.; Fadeyi, O.
O.; Gallego, G. M.; Mousseau, J. J.; Oliver, R.; Sach, N. W.; Smith, J.
K.; Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. J. Am. Chem. Soc.
2017, 139, 3209–3226. (b) Noyori, R.; Suzuki, T.; Kumagai, Y.;
Takaya, H. J. Am. Chem. Soc. 1971, 93, 5894–5896.
13. Depending on the metal, this insertion mechanism can be
different. In some cases, it has been postulated that the metal insertion
occurs through first Cl atom abstraction (analogous to the scenario in
strategy 3) followed by radical recombination.
14. For a review, see: (a) Choi, J.; Fu, G. C. Science 2017, 356,
eaaf7230. For examples, see: (b) Terao, J.; Watanabe, H.; Ikumi, A.;
Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222–4223. (d)
González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360–
5361. (d) Lu, Z.; Fu, G. C. Angew. Chem., Int. Ed. 2010, 49, 6676–
6678. (e) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc.
2015, 137, 11562−11565. (f) Hofstra, J. L.; Cherney, A. H.; Ordner, C.
M.; Reisman, S. E. J. Am. Chem. Soc. 2018, 140, 139–142. (g) Csok,
Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. J. Am. Chem.
Soc. 2008, 130, 8156–8157. (h) Börjesson, M.; Moragas, T.; Martin, R.
J. Am. Chem. Soc. 2016, 138, 7504–7507. (i) Zhou, Y.-Y.; Uyeda, C.
Angew. Chem. Int. Ed. 2016, 55, 3171–3175. (j) Erickson, L. W.;
Lucas, E. L.; Tollefson, E. J.; Jarvo, E. R. J. Am. Chem. Soc. 2016, 138,
14006−14011. (k) Anka-Lufford, L. L.; Huihui, K. M. M.; Gower, N.
J.; Ackerman, L. K. G.; Weix, D. J. Chem. Eur. J. 2016, 22, 11564–
11567.
15. For examples, see: (a) Qian, X.; Auffrant, A.; Felouat, A.;
Gosmini, C. Angew. Chem., Int. Ed. 2011, 50, 10402–10405. (b) Ikeda,
Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem.
Soc. 2002, 124, 6514–6515.
16. (a) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.;
Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am.
Chem. Soc. 2010, 132, 10674–10676. (b) Ghorai, S. K.; Jin, M.;
Hatakeyama, T.; Nakamura, M. Org. Lett. 2012, 14, 1066–1069.
17. Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. J. Am. Chem.
Soc. 2015, 137, 13902–13907.
30. Streuff, J. Chem. Eur. J. 2011, 17, 5507–5510.
31. For an example, see: Chai, G.; Lu, Z.; Fu, C.; Ma, S. Adv. Synth.
Catal. 2009, 351, 1946–1954.
32. For example, hypothetically, aryl bromides (14), alkyl bromides
(76), and aryl boronates (16) might not be compatible with Ni-
catalyzed conditions, tertiary amines (12) might not be compatible with
photoredox conditions, alkenes (66, 71) might not be compatible with
Fe-catalyzed hydroalkylation conditions, and alkyl halides (6, 76) and
ketones (74) might not be compatible with conditions involving Mg or
Grignard reagents.
33. If the reaction goes through the proposed mechanism, the
theoretical yield of reaction using 1 equiv of Cp*TiCl3 is 50%.
34. (a) Fleury, L. M.; Kosal, A. D.; Masters, J. T.; Ashfeld, B. L. J.
18. Ref. 17 shows 1 example of an unactivated 3° alkyl chloride.
Ref. 14e shows 1 example of a 3° benzyl chloride, the alkyl-metal
ACS Paragon Plus Environment