10.1002/ejoc.202100513
European Journal of Organic Chemistry
COMMUNICATION
Me
Me
48, 5094-5115, d) L. Ackermann, A. Althammer. R. Born, Angew. Chem.,
Int. Ed. 2006, 45, 2619-2622; d) L. Ackermann, P. Novak, R. Vicente, N.
Hofmann, Angew. Chem., Int. Ed. 2009, 48, 6045-6048; e) R. Giri, X.
Chen, J-Q. Yu, Angew. Chem., Int. Ed. 2005, 44, 2112-2115; f) L.
Ackermann, Acc. Chem. Res. 2014, 47, 281-295. (g) J. Li, S. De Sarkar,
L. Ackermann, Top. Organomet. Chem. 2016, 55, 217-257; h) T. Sato, T.
Yoshida, H. H. Al Mamari, L. Ilies, E. Nakamura, Org. Lett. 2017, 19, 5458-
5461; i) C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G.
Pototschnio, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T.
Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603-
6743; j) M. Wu, X. Huang, H. Zhang, P. Li, Chinese J. Org. Chem. 2019,
39, 3114-3131; k) F. Luo, Chinese J. Org. Chem. 2019, 39, 3084-3104; l)
J. I. Higham, J. A. Bull, Org. Biomol. Chem, 2020, 18, 7291-7315; m) G.
Rani, V. Luxami, K. Paul, Chem. Commun. 2020, 56, 12479-12521; n) S.
Sasmal, U. Dutta, G. K. Lahiri, D. Maiti, Chem. Lett. 2020, 49, 1406-1420;
o) J. Zhang, X. Lu, C. Shen, L. Xu, L. Ding, G. Zhong, Chem. Soc. Rev.
2021, 50, 3263-3314; p) J. Das, D. K. Mal, S. Maji, D. Maiti, ACS Catal.
2021, 11, 4205-4229; q) T. Naveen, Tetrahedron, 2021, 84, 132025-
132040.
NMe
NPh
NMe
O
O
H
NPh
N
N
H
13
R
R
H
O
O
Ar
[RuIIX2L3]
15
Na2CO3
NaX, NaHCO3
NaX, NaHCO3
Me
Me
NMe
O
NMe
O
NPh
NPh
N
N
RuII
X
R
R
RuIV
O
O
H
13mi
Me
Ar
X
NMe
NPh
13miii
O
Na2CO3
ArX
14
N
RuII
R
O
NaX, NaHCO3
13mii
Scheme 11. Proposed mechanism for the Ru-catalyzed C-H bond arylation of
benzamides bearing 4-aminoantipyrine.
[3] I. Omae, Coord. Chem. Rev., 2004, 248, 995-1023.
[4] a) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J-Q, Yu, Chem. Rev. 2017,
117, 13, 8754–8786; b) X. Chen, K. M. Engle, D-H Wang, J-Q, Yu, Angew.
Chem. Int. Ed. 2009, 48, 5094–5115; c) Q. Shao, K. Wu, Z. Zhuang, S.
Qian, J-Q, Yu, Acc. Chem. Res. 2020, 53, 833-851; d) S. R. Neufeldt, M.
S. Sanford, Acc. Chem. Res. 2012, 45, 936-946; e) K. L. Bay, Y-Fang,
Yang, K. N. Houk, J. Organomet. Chem. 2018, 864, 19-25; f) T. M. Shaikh,
F-E, Hong, J. Organomet. Chem. 2016, 801, 139-156; g) C-L, Sun, B-J,
Li, Z-J, Shi, Chem. Commun. 2010, 46, 677-685; h) P-S. Wang, L-Z.
Gong, Acc. Chem. Res. 2020, 53, 2814-2854.
In summary, a novel design-based N,O-bidentate directing group
based on the cheap and commercially available material 4-
aminoantipyrine (AAP) is reported herein. Aromatic benzamides
bearing 4-aminoantipyrine (AP benzamides) underwent Ru-
catalyzed C(sp2)-H bond arylation that employed amongst other
optimum reaction conditions; [RuCl2(PPh3)3] (10 mol %) as a
catalyst, an aryl bromide as an electrophile and Na2CO3 as a base.
Differently substituted and electronically different AP benzamides
underwent efficient Ru-catalyzed C(sp2)-H arylation reaction in
decent yields and with good functional group tolerance. This
development of the novel bidentate directing group based on 4-
aminoantiprine presented herein, should contribute to the
advances in the field of directed C-H bond functionalization
catalyzed by transition metals. The present report should set
stage for potentially different C-H bond functionalization reactions
catalyzed by other transition metals, particularly the cheaper and
more earth-abundant second-row transition metals.
[5] a) S. Rej, N. Chatani, Angew. Chem., Int. Ed. 2019, 58, 8304-8329; b) T.
Piou, T. Rovis, Acct. Chem. Res. 2018, 51, 170-180; c) T. Yakura, H.
Nambu, Tetrahedron Lett. 2018, 59, 188-202; d) S. Motevalli, Y. Sokeirik,
A. Ghanem, J. Org. Chem. 2016, 8, 1459-1475; e) A. DeAngelis, R.
Panish, J. M. Fox, Acct. Chem. Res. 2016, 49, 115-127; f) B. Ye, N.
Cramer, Acc. Chem. Res. 2015, 48, 1308-1318; g) J. C. Lewis, R. G.
Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013-1025; h) J.
Wencel-Delord, F. W. Patureau, F. Glorius, Top. Organomet. Chem.
2016, 55, 1-27; i) S. Vasquez-Cespedes, X. Wang, F. Glorius, ACS Catal.
2018, 8, 242-257; j) G. Song, X. Li, Acc. Chem. Res. 2015, 48, 1007-1020.
[6] a) K. S. Singh, Catalysts 2019, 9, 173/1-173/51; b) C. Shan, L. Zhu, L-B,
Qu, R. Bai, Y. Lan, Chem. Soc. Rev. 2018, 47, 7552-7576; c) S. Dana, M.
R. Yadav, A. K. Sahon, Top. Organomet. Chem. 2016, 55, 189-215; d) S.
Ruiz, P. Villuendas, E. P. Urriolabeitia, Tetrahedron Lett. 2016, 57, 3413-
3432; e) B. Li, P. H. Dixneuf, Top. Organomet. Chem. 2015, 48, 119-193;
f) L. Ackermann, R. Vicente, Topics Curr. Chem. 2010, 292, 211-229.
Acknowledgements
The authors would like to thank Sultan Qaboos University for
funding this research through Internal Grant IG/SCI/CHEM/19/02.
Our gratitude is extended for Ms. Maryam Al Jahwary,
Department of Chemistry, College of Science, Sultan Qaboos
University, for running NMR experiments and for Dr. Jamal Al
Sabahi at the Centre Instrumental Laboratory, College of
Agricultural and Marine Sciences, Sultan Qaboos University for
assistance with GC-MS measurements.
[7] L. Ackermann, Acct. Chem. Res. 2020, 53, 84-104.
[8] a) S. M. Khake, N. Chatani, Trends Chem. 2019, 1, 524-539; b) S. M.
Khake, N. Chatani, Chem. 2020, 6, 1056-1081; c) Y-H. Liu, Y-N. Xia, B-
F. Shi, Chin. J. Chem. 2020, 38, 635-662.
[9] a) R. Cano, K. Mackey, G. P. McGlacken, Catal. Sci. Technol. 2018, 8,
1251-1266; b) C. Wang, Synlett 2013, 24, 1606-1613; c) W. Liu, L.
Ackermann, ACS Catal. 2016, 6, 3743-3752; d) Y. Hu, B. Zhou, C. Wang,
Acc. Chem. Res. 2018, 51, 816-827.
Keywords: 4-Aminoantipyrine • Directing group • C-H
Functionalization • Ru-Catalysis• Chelation Assistance
[10] a) M. Lanzi, G. Cera, Molecules 2020, 25, 1806; b) G. Cera, L.
Ackermann, Topics Curr. Chem. 2016, 374, 1-34; b) N. B. Ambhaikar in
C-H Bond Activation in Organic Synthesis (Eds.: J. J. Lie) 2015, 145-174;
c) L. Ilies, E. Nakamura, Fain Kemikaru 2012, 41, 40-45; d) L. Ilies, E.
Nakamura, Top. Organomet. Chem. 2016, 56, 1-18; e) R. Shang, L. Ilies,
E. Nakamura, Chem. Rev. 2017, 117, 9086-9139.
[1] a) A. E Shilov, G. B. Shul’pin, Chem. Rev. 1997, 97, 2879-2932; b) V.
Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731-1769; c) A.
Ryabov, Chem. Rev. 1990, 90, 403-424; b) A. R. Dick, M. S. Sanford,
Tetrahdedron 2006, 2439-2463; c) L. Ackermann, R. Vicente, A. Kapdi,
Angew. Chem., Int. Ed. 2009, 48, 9792-9826; d) K. M. Engle, T,-S. Mei.,
M. Wasa, J. Q. Yu, Acc. Chem. Res. 2012, 45, 788; e) L. Wozniak, N.
Cramer, Trends Chem. 2019, 1, 471-484; f) H. H. Al Mamari, B. Stefane,
H. B. Zugeli, Tetrahedron, 2020, 76, 130925-130936; g) Q. Zheng, C-F.
Liu, J. Chen, G-W. Rao, Adv. Synth. Catal. 2020, 362, 1406-1446; h) M.
Kaur, J. F. Van Humbeck, Org. Biomol. Chem. 2020, 18, 606-617; i) R.
Ali, R. Siddiqui, Adv. Synth. Catal. 2021, 363, 1290-1316; j) Y. Wu, C. Pi,
Y. Wu, X. Cui, Chem. Soc. Rev. 2021, 50, 3677-3689; k) T. Dalton, T.
Faber, F. Glorius, ACS Cent. Sci. 2021, 7, 245-261; l) J. Wen, Z. Shi, Acc.
Chem. Res. 2021, 54, 1723-1736.
[11] a) S. Prakash, R. Kuppusamy, C-H. Cheng, ChemCatChem 2018, 10,
683-705; b) S. Wang, S-Y. Chen, X-Q. Yu, Chem. Commun. 2017, 53,
3165-3180; c) T. Yoshino, S. Matsunaga, Adv. Organomet. Chem. 2019,
68, 197-247; d) A. Baccalini, S. Vergura, P. Dolui, G. Zanoni, D. Maiti,
Org. Biomol. Chem. 2019, 17, 10119-10141; e) M. Moselage, J. Lie, L.
Ackermann, ACS Catal. 2016, 6, 498-525. f) S. Rej, A. Das, N. Chatani,
Coord. Chem. Rev. 2020, 431, 3, 213683-213719.
[12] a) V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005,
127, 13154-13155; b) D. Shabashov, O. Daugulis, J. Am. Chem. Soc.
2010, 132, 3965-3972; c) D. Shabashov, O. Daugulis, Org. Lett. 2005, 7,
3657-3659; d) G. Rouquet, N. Chatani, Angew. Chem., Int. Ed. 2013, 52,
11726-11743; e) Y. Aihara, N. Chatani, Chem. Sci. 2013, 4, 664-670; f)
[2] a) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; b) D. A.
Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012,
45, 814; c) L. Ackermann, L. Top. Organomet. Chem. 2007, 24, 35; d) X.
Chen, K. M. Engle, D.–H. Wang, J-Q. Yu, Angew. Chem., Int. Ed. 2009,
5
This article is protected by copyright. All rights reserved.