synthetic fragments of constitution 2 with those resonances
from analogous protons and carbons in the intact natural
product 1.5 Anisotropic chemical shift effects within dia-
stereomers often operate over relatively long distances.
Hence, we were optimistic that the substituents at the pair
of stereogenic centers among C(8′)/C(10′)/C(14′) (1,3-, 1,5-,
and 1,7-disposed across an intervening E-alkene) in each of
the four possible diastereomers of 2 would communicate to
a sufficient extent to give rise to distinct sets of NMR data.
The synthesis began (Scheme 1) with the known nonra-
cemic alcohol 3 (92% ee), available in multigram quantities
Dimethyl cuprate displacement of the tosylate11 and TBDPS
removal gave alcohol 9ss. TPAP oxidation of 9ss gave
aldehyde 10ss (not shown) and immediate Horner-Wad-
sworth-Emmons olefination with phosphonate 1112 gave the
E,E,E-triene13 ester 12ss, thereby completing the synthesis
of the C(1′)-C(20′) fragment.
Two variations (Scheme 2) to the above theme allowed
access to the three additional diastereomers (i.e., “sa”, “as”,
Scheme 2
Scheme 1
(a ) steps e-f from Scheme 1. (b) steps g-k from Scheme 1.
(c) KF, florisil, MeOH, rt. (d) step l from Scheme 1. (e)
TBSO(CH2)2NH2, Me3Al, CH2Cl2, then 12, rt.
(a ) TBDPSCl, Et3N, DMAP, CH2Cl2, rt, 99%. (b) K2CO3,
MeOH:H2O (1:1, v/v), reflux, 88%. (c) p-TsCl, Et3N, DMAP,
CH2Cl2, rt, 99%. (d) TMSCtCLi, THF/DMSO, -78 °C to rt; then
K2CO3, MeOH, 67%. (e) (i) Me3Al, Cp2ZrCl2, then 4, CH2Cl2, rt;
(ii) MeLi, hexanes, -40 °C. (f) (S)-6, hexanes, -40 °C to rt, 51%.
(g) DIBAL, CH2Cl2, -78 °C to 0 °C, 77%. (h) p-TsCl, Et3N,
DMAP, CH2Cl2, rt, 97%. (i) Me2CuLi, Et2O, -40 °C to rt. (j)
TBAF, THF, rt, 72%, two steps. (k) TPAP, NMO, CH2Cl2, rt. (l)
(EtO)2P(O)CH2(CHdCH)2CO2Et, LDA, -78 to 0 °C, 81%, two
steps.
and “aa”). First, coupling 5 with triflate (R)-6 instead of (S)-6
gave the anti,syn ester 7as. Second, each of the syn,syn- and
(5) For example, see: (a) Cha, J. K.; Christ, W. J.; Finan, J. M.; Fujioka,
H.; Kishi, Y.; Klein, L. L.; Ko, S. S.; Leder, J.; McWhorter, W. W., Jr.;
Pfaff, K.-P.; Yonaga, M.; Uemura, D.; Hirata, Y. J. Am Chem. Soc. 1982,
104, 7369-7371 and preceding papers. (b) Hoye, T. R.; Suhadolnik, J. C.
J. Am. Chem. Soc. 1987, 109, 4402-4403. (c) Gale, J. B.; Yu, J.-G.; Khare,
A.; Hu, X. E.; Ho, D. H.; Cassady, J. M. Tetrahedron Lett. 1993, 34, 5851-
4. (d) Oikawa, H.; Matsud, I.; Ichihara, A.; Kohmoto, K. Tetrahedron Lett.
1994, 35, 1223-6. (e) Boyle, C. D.; Harmange, J.-C.; Kishi, Y. J. Am.
Chem. Soc. 1994, 116, 4995-6. (f) Harmange, J.-C.; Boyle, C. D.; Kishi,
Y. Tetrahedron Lett. 1994, 35, 6819-22. (g) Kishi, Y.; Boyle, C. D.
Tetrahedron Lett. 1995, 36, 5695-8. (h) Kishi, Y.; Boyle, C. D. Tetrahedron
Lett. 1995, 36, 4579-82. (i) Zheng, W.; DeMattei, J. A.; Wu, J. P.; Duan,
J. J. W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am Chem. Soc. 1996, 118,
7946-68. (j) Sasaki, M.; Matsumori, N.; Maruyama, T.; Nonomura, T.;
Murata, M.; Tachibana, K.; Yasumoto T. Angew. Chem., Int. Ed. Engl.
1996, 35, 1672-5. (k) Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata,
M.; Tachibana, K.; Yasumoto T. Angew. Chem., Int. Ed. Engl. 1996, 35,
1675-8. (l) Kishi, Y. Pure Appl. Chem. 1998, 70, 339-344. (m) Kobayashi,
Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177-80. (n) Lee, J.;
Kobayashi, Y.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2181-4.
from the porcine pancreatic lipase (PPL) catalyzed resolution
of meso-2,4-dimethyl-1,5-pentanediol.6,7 Protection of the
alcohol as its TBDPS ether, acetate cleavage, tosylation,
displacement with TMSCtC-Li,8 and TMS removal gave
alkyne 4. The third stereocenter [C(14′)] was introduced by
reaction of the triflate of S-methyl lactate [(S)-6] with the
alkenylalanate 5,9 which was derived from zirconocene
dichloride-promoted addition of trimethylaluminum10 to
alkyne 4. The resulting syn,syn-(E)-â,γ-unsaturated ester 7ss
[“ss” ) syn,syn ) Me(17′)/Me(19′)-syn,Me(19′)/Me(20′)-
syn] was reduced (DIBAL) and tosylated to provide 8ss.
1482
Org. Lett., Vol. 2, No. 10, 2000