3792
The new approach began from the known aldehyde 16,18 which was homologated into 17 in the
predescribed manner. Two-step reduction of 17 delivered 18 whose coupling to the (E)-boron enolate
of 7 and stereocontrolled hydride reduction proceeded uneventfully as before. Once ketal 20 had been
obtained by dethioacetalization, we were pleased to recognize that reduction with sodium borohydride
in THF and water (3:1) as solvent19,20 did indeed proceed regioselectively to furnish 21 in 69% yield.
Two-step oxidation of this primary carbinol to carboxylic acid 22 was accomplished in notably efficient
fashion (97%). In preparation for peptidic coupling, the previously synthesized 233 was simultaneously
freed of its Boc protecting group by stirring with trifluoroacetic acid. The final conjoining of 22 with
unmasked 23, accomplished with HATU21 because of the hindered nature of the reacting components,
gave rise to 2 in 53% overall yield.
The described chemistry not only opens up a possibly efficient entry to sanglifehrin A, but is expected
to find useful application in analog synthesis.
Acknowledgements
This work was financially supported by Eli Lilly and Company.
References
1. (a) Fehr, T.; Oberer, L. Intern. Patent Appl. W097/02285, January 23, 1997. (b) Fehr, T.; Oberer, L.; Quesniaux, R. V.;
Sanglier, J.-J.; Schuler, W.; Sedrani, R. Intern. Patent Appl. W098/07743, March 3, 1998.
2. (a) Sanglier, J.-J.; Quesniaux, V.; Fehr, T.; Hofmann, H.; Mahnuke, M.; Memmert, K.; Schuler. W.; Zeknke, G.; Gschwind,
L.; Maurer, C.; Schilling, W. J. Antibiot. 1999, 52, 466. (b) Fehr, T.; Kallen, J.; Oberer, L.; Sanglier, J.-J.; Schilling, W. J.
Antibiot. 1999, 52, 474.
3. Paquette, L. A.; Konetzki, I.; Duan, M. Tetrahedron Lett. 1999, 40, 7441.
4. (a) Bänteli, R.; Brun, I.; Hall, P.; Metteruich, R. Tetrahedron Lett. 1999, 40, 2109. (b) Metternich, R.; Denni, D.; Thai, B.;
Sedrani, R. J. Org. Chem. 1999, 64, 9632.
5. (a) Nicolaou, K. C.; Xu, J.; Murphy, F.; Barluenga, S.; Baudoin, O.; Wei, H.-x.; Gray, D. L. F.; Ohshima, T. Angew.
Chem., Int. Ed. 1999, 38, 2447. (b) Nicolaou, K. C.; Ohshima, T.; Murphy, F.; Barluenga, S.; Xu, J.; Winssinger, N. Chem.
Commun. 1999, 809.
6. Rivero, R. A.; Greenlee, W. J. Tetrahedron Lett. 1991, 32, 2453.
7. Evans, D. A.; Ennis, M. D.; Le, T. J. Am. Chem. Soc. 1984, 106, 1154.
8. The TBS analog of 3 has been previously reported: Smith III, A. B.; Ott, G. R. J. Am. Chem. Soc. 1998, 120, 3935.
9. Roush, W. R. J. Am. Chem. Soc. 1980, 102, 1390.
10. Oppolzer, W.; Dupuis, D.; Poli, G.; Raynham, T. M.; Bernardinelli, G. Tetrahedron Lett. 1988, 29, 5885.
11. Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, 48, 2127.
12. Paterson, I.; Yeung, K.-S.; Watson, C.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11935. The specific experimental
details can be found on page 11 946.
13. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
14. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287.
15. Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112,
5583.
16. The Negishi conditions (Negishi, E.; Van Horn, D. E.; King, A. O.; Okukado, N. Synthesis 1979, 501) proved to be too
harsh for 10 and its derivatives.
17. Evans, D. A.; Britton, T. C.; Ellman, J. H. Tetrahedron Lett. 1987, 28, 6141.
18. Nicolaou, K. C.; King, N. P.; Finlay, M. V. R.; He, Y.; Roschangar, F.; Vourloumis, D.; Vallberg, H.; Sarabia, F.; Ninkovic,
S.; Hepworth, D. Bioorg. Med. Chem. 1999, 7, 665.
19. In this instance, the customary use of LiBH4 in THF with methanol as a co-solvent resulted in reductive deiodination.
20. Prashad, M.; Har, P.; Kim, H.-Y.; Repic, O. Tetrahedron Lett. 1998, 39, 7067.
21. Albericio, F.; Kates, S. A.; Carpino, L. A. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Editor-in-
chief; John Wiley: Chichester, 1995; Vol. 3, pp. 2028–2031.