4984
J. Am. Chem. Soc. 2000, 122, 4984-4985
called for disconnection of macrocycle 2 at C(4-5) and C(17-
18); incorporation of the requisite terminal olefins revealed diene
3 (Scheme 1). Assembly of 3 would again rely on Danheiser
Assembly of (-)-Cylindrocyclophanes A and F via
Remarkable Olefin Metathesis Dimerizations
Amos B. Smith, III,* Sergey A. Kozmin,
Christopher M. Adams, and Daniel V. Paone
Scheme 1
Department of Chemistry, Laboratory for Research on the
Structure of Matter, and Monell Chemical Senses Center
UniVersity of PennsylVania, Philadelphia, PennsylVania 19104
ReceiVed February 4, 2000
A fascinating array of architecturally complex natural products
arise via dimerization.1 The vast majority of these structures
involve assembly via carbon-heteroatom linkages (e.g., ester,
amide, etc.), giving rise to macrocyclic lactones and lactams often
possessing C2-symmetry. Dimerization via carbon-carbon bond
formation, a relatively rare event, not surprisingly furnishes
particularly attractive synthetic targets. The cylindrocyclophanes
A-F represent such a case.2 These unique naturally occurring
22-membered carbocyclic [7,7]-paracyclophanes,3 isolated by
Moore and co-workers from Cylindrospermum licheniforme,2b are
postulated to arise biosynthetically via dimerization involving
electrophilic aromatic substitution at C(2) of a 5-substituted
resorcinol with an olefin appropriately positioned in the side
chain.2c
annulation,6 in this case involving cyclobutenone 4 and siloxy
acetylene 5, the latter prepared in our first-generation synthesis.5
We envisioned this approach to hold considerable promise for
significant improvement in overall efficiency.
Our point of departure for cylindrocyclophane F (1b) involved
conversion of known alcohol (+)-67 to iodide (+)-78 (Scheme
2). Treatment of this iodide with t-BuLi in ether at -78 °C,
Scheme 2
From the retrosynthetic perspective, exploitation of the above
biomimetic strategy, while appealing, appeared difficult due to
both regio- and stereochemical issues associated with bond
formation at C(7) and C(20). We therefore explored an alternate
tactic involving olefin metathesis4 to close the [7,7]-paracyclo-
phane skeleton.5 This approach led to cylindrocyclophane F (1b),
the first member of the family to succumb to total synthesis.
Encouraged by the high efficiency of the ring-closing metathesis
(RCM) process, we recently explored the feasibility of assembling
the C2-symmetric cyclophane skeletons for both cylindrocyclo-
phanes A and F via olefin metathesis dimerization, a tactic not
previously exploited in natural product total synthesis.4 The plan
followed by addition of the resultant organolithium to ethoxy
cyclobutenone,9 furnished cyclobutenone (+)-88 in 62% yield.
Danheiser annulation6 was then achieved by heating a solution
of (+)-88 and siloxy acetylene (-)-95 for 2 h at 80 °C. Treatment
of the reaction mixture with TBAF, followed after chromatog-
raphy by methylation (MeI, K2CO3, 2-butanone), led to diene (-)-
11.8
For cylindrocyclophane A (1a), Danheiser annulation of stannyl
cyclobutenone 1210 with siloxyacetylene (-)-9,5 followed by
iododestannylation and desilylation, furnished resorcinol (+)-13;8
methylation then gave iodide (-)-14.8 The iodide was next
metalated with t-BuLi and the lithium alkoxide obtained from
(1) For representative syntheses of dimeric natural products, see: (a) Corey,
E. J.; Hua, D. H.; Pan, B.-C.; Seitz, S. P. J. Am. Chem. Soc. 1982, 104, 6818.
(b) White, J. D.; Vedananda, T. R.; Kang, M.; Choudhry, S. C. J. Am. Chem.
Soc. 1986, 108, 8105. (c) Paterson, I.; Yeung, K.-S.; Ward, R. A.; Cumming,
J. G.; Smith, J. D. J. Am. Chem. Soc. 1994, 116, 9391. (d) Nicolaou, K. C.;
Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.; Miller, R.
A.; Tomaszewski, M. J. Chem. Eur. J. 1996, 2, 847. (e) Paterson, I.; Lombart,
H. G.; Allerton, C. Org. Lett. 1999, 1, 19. (f) Boger, D. L.; Ledeboer, M. W.;
Kume, M. J. Am. Chem. Soc. 1999, 121, 1098.
(2) (a) Moore, B. S.; Chen, J.-L.; Patterson, G. M.; Moore, R. M.; Brinen,
L. S.; Kato, Y., Clardy, J. J. Am. Chem. Soc. 1990, 112, 4061. (b) Moore, B.
S.; Chen, J.-L.; Patterson, G. M.; Moore, R. E. Tetrahedron 1992, 48, 3001.
(c) Bobzin, S. C.; Moore, R. E. Tetrahedron 1993, 49, 7615.
(3) (a) Cyclophanes; Keehn, P. M., Rosenfeld, S. M., Eds.; Academic: New
York, 1983. (b) Vogtle, F. Cyclophane Chemistry; Wiley: New York, 1993.
(c) For pioneering work on paracyclophanes, see: Cram, D. J.; Steinberg,
H.; J. Am. Chem. Soc. 1951, 73, 5691.
(4) For recent reviews of RCM in organic synthesis, see: (a) Grubbs, R.
H.; Chang, S. Tetrahedron 1998, 54, 4413. (b) Schuster, M.; Blechert, S.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2036. (c) Schmalz, H.-G. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1833. (d) Grubbs, R. H.; Miller, S. J.; Fu, G.
C. Acc. Chem. Res. 1995, 28, 446.
(5) Smith, A. B., III; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 1999,
121, 7423.
(6) (a) Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49, 1670. (b)
Danheiser, R. L.; Nishida, A.; Savariar, S.; Trova, M. P. Tetrahedron Lett.
1988, 29, 4917.
(7) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982,
104, 1737. (b) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc.
1988, 110, 2506.
(8) The structural assignment to each new compound is in accord with its
1
IR, H and 13C NMR, and mass spectroscopic analysis.
(9) Wasserman, H. H.; Piper, J. U.; Dehmlow, E. V. J. Org. Chem. 1973,
38, 1451.
(10) Liebeskind, L. S.; Stone, G. B.; Zhang, S. J. Org. Chem. 1994, 59,
7917.
10.1021/ja000430p CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/06/2000