S. Hanada, Y. Motoyama, H. Nagashima
SHORT COMMUNICATION
Iura, T. Maki, H. Nagashima, J. Org. Chem. 2002, 67, 4985–
4988; c) Y. Motoyama, C. Itonaga, T. Ishida, M. Takasaki, H.
Nagashima, Org. Synth. 2005, 82, 188–195; d) Y. Motoyama,
K. Mitsui, T. Ishida, H. Nagashima, J. Am. Chem. Soc. 2005,
127, 13150–13151; e) S. Hanada, T. Ishida, Y. Motoyama, H.
Nagashima, J. Org. Chem. 2007, 72, 7551–7559.
(30 mL) was slowly added 1,2-bis(chlorodimethylsilyl)ethane (10 g,
23.2 mmol) at 0 °C; the mixture was then stirred at 50 °C for 3 h.
Purification by direct distillation from the resultant suspension un-
der reduced pressure (64 °C/90 Torr) gave 1,2-bis(dimethylsilyl)-
1
ethane (BDMSE) in 81% yield (5.5 g). Colorless liquid. H NMR
(270 MHz, CDCl3): δ = 0.07 (d, J = 3.6 Hz, 12 H), 0.53 (t, J =
[4] Rate enhancement by proximate dual Si–H groups is often seen
in transition-metal-catalyzed hydrosilylation reactions, see: a)
H. Nagashima, K. Tatebe, Y. Ishibashi, A. Nakaoka, J. Sakaki-
bara, K. Itoh, Organometallics 1995, 14, 2868–2879; b) S. Han-
ada, Y. Motoyama, H. Nagashima, Tetrahedron Lett. 2006, 47,
6173–6177, and ref.[3a]
[5] In the reaction of trans-cinnamonitrile with BDMSE, dihy-
drocinnamonitrile was obtained in ca. 60% yield by [1,4]-ad-
dition, followed by hydrolysis.
[6] a) K. Itoh, M. Katsuda, Y. Ishii, J. Chem. Soc. B 1970, 302–
304; b) B. Dejak, Z. Lasocki, J. Organomet. Chem. 1983, 246,
151–158; c) M. S. Samples, C. H. Yoder, J. Organomet. Chem.
1987, 332, 69–73.
[7] a) C. Kruger, E. G. Rochow, U. Wannagat, Chem. Ber. 1963,
96, 2138–2143; b) W. E. Dannis, J. Org. Chem. 1970, 35, 3253–
3255; c) B. Rigo, C. Lespagnol, M. Pauly, Tetrahedron Lett.
1986, 27, 347–348.
1.7 Hz, 4 H), 3.84 (t of sept., J = 1.7, 3.6 Hz, 2 H) ppm. 13C NMR
(67.8 MHz, CDCl3): δ = –4.7, 7.2 ppm. IR (neat): νSi–H
=
2116 cm–1.
Typical Dehydration Procedure: To a stirred solution of p-toluamide
(2a) (1.0 mmol) and (µ3,η2,η3,η5-acenaphthylene)Ru3(CO)7 (1)
(16.3 mg, 2.5 mol-%) in dimethoxyethane (0.5 mL) was slowly
added 1,2-bis(dimethylsilyl)ethane (246 µL, Si–H: 2.5 equiv. to 2a).
At this time, the evolution of hydrogen gas was observed. After the
mixture was stirred at 70 °C for 12 h, the cooled reaction mixture
was diluted with diethyl ether and quenched by the addition of
sodium hydrogen carbonate. After it was stirred at room tempera-
ture for 30 min, the resultant mixture was filtered through a pad
of Celite, and the filtrate was concentrated under reduced pressure.
Purification by silica gel column chromatography (hexane/ether =
20:1) gave p-tolunitrile (3a) in 90% yield. Colorless liquid. 1H
NMR (270 MHz, CDCl3): δ = 2.42 (s, 3 H), 7.27 (d, J = 8.2 Hz, 2
H), 7.54 (d, J = 8.2 Hz, 2 H) ppm. 13C NMR (67.8 MHz, CDCl3):
[8] a) J. Pump, E. G. Rochow, Chem. Ber. 1964, 97, 627–635, and
ref. 6a.
[9] A. R. Bassindale, T. B. Posner, J. Organomet. Chem. 1979, 175,
273–284.
[10] K. Matsubara, J.-I. Terasawa, H. Nagashima, J. Organomet.
Chem. 2002, 660, 145–152.
δ = 21.9, 109.4, 119.2, 129.9, 132.1, 143.7 ppm. IR (neat): νCϵN
=
2222 cm–1.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures and characterization data of
both the primary amides and the nitriles formed are presented.
[11] a) H. Vorbrüggen, Silicon-Mediated Transformations of Func-
tional Groups, Wiley-VCH, Weinheim, 2004; b) T. Tozawa, Y.
Yamabe, T. Mukaiyama, Chem. Lett. 2005, 34, 1334–1335; T.
Tozawa, Y. Yamabe, T. Mukaiyama, Chem. Lett. 2005, 34,
1586–1587, and references therein.
[12] Reviews, see; a) D. T. Mowry, Chem. Rev. 1948, 42, 189–283;
b) R. C. Larock, Comprehensive Organic Transformations,
VCH, New York, 1989; c) D. B. Reisner, E. C. Horning, Org.
Synth., Coll. Vol. IV, 1963, p. 144–145; d) W. Lehnert, Tetrahe-
dron Lett. 1971, 12, 1501–1504; e) J. A. Krynitsky, H. W. Car-
hart, Org. Synth., Coll. Vol. IV, 1963, p. 436–438; f) F. Cam-
pagna, A. Carotti, G. Casini, Tetrahedron Lett. 1977, 18, 1813–
1815.
Acknowledgments
This work was partially supported by a Grant-in Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology, Japan. S. H. is thankful for a Research Fellowship
from the Japan Society for the Promotion of Science for Young
Scientists.
[13] a) C. Kuo, J. Zhu, J. Wu, C. Chu, C. Yao, K. Shia, Chem.
Commun. 2007, 301–303; b) A. V. Narsaiah, K. Nagaiah, Adv.
Synth. Catal. 2004, 346, 1271–1274; c) N. Nakajima, M. Saito,
M. Ubukata, Tetrahedron 2002, 58, 3561–3577.
[14] a) R. T. Ruck, R. G. Bergman, Angew. Chem. Int. Ed. 2004, 43,
5375–5377; b) S. Kim, K. Yi, Tetrahedron Lett. 1986, 27, 1925–
1928; c) C. Ressler, H. Ratzkin, J. Org. Chem. 1961, 26, 3356–
3360.
[1] a) I. Ojima in The Chemistry of Organic Silicon Compounds
(Ed.: S. Patai, Z. Rappoport), John Wiley & Sons, New York,
1989, part 2, ch. 25, pp. 1479–1526; b) B. Marciniec, Compre-
hensive Handbook on Hydrosilylation, Pergamon Press, Oxford,
1992; c) B. Marciniec in Applied Homogeneous Catalysis with
Organometallic Compounds (Eds.: B. Cornils, W. A. Herr-
mann), Wiley-VCH, Weinheim, 1996, vol. 1, ch. 2.
[2] a) H. Nishiyama, K. Itoh in Catalytic Asymmetric Synthesis,
2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000, pp. 111–
[15] M. I. Bruce, C. M. Jensen, N. L. Jones, Inorg. Synth. 1990, 28,
216–220, and references therein.
143; b) J.-F. Carpentier, V. Bette, Curr. Org. Chem. 2002, 6, [16] A. Mantovani, S. Cenini, Inorg. Synth. 1976, 16, 51–53.
913–936; O. Riant, N. Mostefaï, J. Courmarcel, Synthesis 2004,
2943–2958.
[3] a) H. Nagashima, A. Suzuki, T. Iura, K. Ryu, K. Matsubara,
Organometallics 2000, 19, 3579–3590; b) K. Matsubara, T.
[17] P. Pawluc, B. Marciniec, I. Kownacki, H. Maciejewski, Appl.
Organomet. Chem. 2005, 19, 49–54.
Received: May 29, 2008
Published Online: July 14, 2008
4100
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 4097–4100