92
B. Zhu et al. / Dyes and Pigments 86 (2010) 87e92
[23] Guo X-F, Wang H, Guo Y-H, Zhang HS. Selective spectrofluorimetric determina-
tion of glutathione in clinical and biological samples using 1,3,5,7-tetramethyl-8-
phenyl-(2-maleimide)-difluoroboradiaza-s-indacene. Analytica Chimica Acta
2009;633:71e5.
[41] Ros-Lis JV, García B, Jiménez D, Martínez-Máñez R, Sancenón F, Soto J, et al.
Squaraines as fluoro-chromogenic probes for thiol-containing compounds and
their application to the detection of biorelevant thiols. Journal of American
Chemical Society 2004;126(13):4064e5.
[24] Yi L, Li HY, Sun L, Liu LL, Zhang CH, Xi Z. A highly sensitive fluorescence probe
for fast thiol-quantification assay of glutathione reductase. Angewandte
Chemie International Edition 2009;48:4034e7.
[42] Fu YY, Li HX, Hu WP, Zhu DB. Fluorescence probes for thiol-containing amino
acids and peptides in aqueous solution. Chemical Communication 2005;25:
3189e91.
[25] Tanaka F, Mase N, Barbas III CF. Determination of cysteine concentration by
[43] Sudeep PK, Joseph STS, Thomas KG. Selective detection of cysteine and
glutathione using gold nanorods. Journal of American Chemical Society
2005;127(18):6516e7.
fluorescence increase: reaction of cysteine with
Chemical Communication 2004;15:1762e3.
a fluorogenic aldehyde.
[26] Zhang M, Li MY, Zhao Q, Li FY, Zhang DQ, Zhang JP, et al. Novel Y-type two-
photo active fluorophore: synthesis and application in fluorescent sensor for
cysteine and homocysteine. Tetrahedron Letters 2007;48:2329e33.
[27] Kim T-K, Lee D-N, Kim H-J. Highly selective fluorescent sensor for homo-
cysteine and cysteine. Tetrahedron Letters 2008;49:4879e81.
[28] Duan LP, Xu YF, Qian XH, Wang F, Liu JW, Cheng TY. Highly selective fluo-
rescent chemosensor with red shift for cysteine in buffer solution and its
bioimage: symmetrical naphthalimide aldehyde. Tetrahedron Letters
2008;49:6624e7.
[44] Zhang M, Yu MX, Li FY, Zhu MW, Li MY, Gao YH, et al. A highly selective
fluorescence turn-on sensor for cysteine/homocysteine and its application in
bioimaging. Journal of American Chemical Society 2007;129(34):10322e3.
[45] Tang B, Xing YL, Li P, Zhang N, Yu FB, Yang GW. A rhodamine-based fluorescent
probe containing a SeeN bond for detecting thiols and its application in living
cells. Journal of American Chemical Society 2007;129(38):11666e7.
[46] Sreejith S, Divya KP, Ajayaghosh A. A near-infrared squaraine dye as a latent
ratiometric fluorophore for the detection of aminothiol content in blood
plasma. Angewandte Chemie International Edition 2008;47:7883e7.
[47] Li HB, Xu J, Yan HJ. Ratiometric fluorescent determination of cysteine based on
organic nanoparticles of naphthaleneethioureaethiadiazole-linked molecule.
Sensors and Actuators B: Chemical 2009;139(2):483e7.
[29] Lee K-S, Kim T-K, Lee JH, Kim H-J, Hong J-I. Fluorescence turn-on probe for
homocysteine and cysteine in water. Chemical Communication 2008;46:
6173e5.
[30] Lin WY, Long LL, Yuan L, Cao ZM, Chen BB, Tan W. A ratiometric fluorescent
probe for cysteine and homocysteine displaying a large emission shift. Organic
Letters 2008;10(24):5577e80.
[48] Shang L, Dong SJ. Sensitive detection of cysteine based on fluorescent silver
clusters. Biosensors and Bioelectronics 2009;24:1569e73.
[49] Lin WY, Yuan L, Cao ZM, Feng YM, Long LL. A sensitive and selective fluores-
[31] Zhang XJ, Ren XS, Xu Q-H, Loh KP, Chen Z-K. One- and two-photo turn-on
fluorescent probe for cysteine and homocysteine with large emission shift.
Organic Letters 2009;11(6):1257e60.
[32] Pullela PK, Chiku T, Carvan III MJ, Sem DS. Fluorescence-based detection of
thiols in vitro and in vivo using dithiol probes. Analytical Biochemistry
2006;352:265e73.
[33] Piggott AM, Karuso P. Fluorometric assay for the determination of glutathione
reductase activity. Analytical Chemistry 2007;79(22):8769e73.
[34] Pires MM, Chmielewski J. Fluorescence imaging of cellular glutathione using
a latent rhodamine. Organic Letters 2008;10(5):837e40.
cent thiol probe in water based on the conjugate 1,4-addition of thiols to
a, b-
unsaturated ketones. Chemistry A European Journal 2009;15:5096e103.
[50] Zhang Y, Li Y, Yan XP. Photoactivated CdTe/CdSe quantum dots as a near
infrared fluorescent probe for detecting biothiols in biological fluids. Analyt-
ical Chemistry 2009;81(12):5001e7.
[51] Han BY, Yuan JP, Wang EK. Sensitive and selective sensor for biothiols in the
cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II)
system. Analytical Chemistry 2009;81(13):5569e73.
[52] Banerjee S, Kar S, Perez JM, Santra S. Quantum dot-based OFF/ON probe for
detection of glutathione. The Journal of Physical Chemistry
C 2009;113
[35] Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N. 2,4-Dini-
trobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent
in thiol-quantification enzyme assays. Angewandte Chemie International
Edition 2005;44:2922e5.
[36] Jiang W, Fu QQ, Fan HY, Ho J, Wang W. A highly selective fluorescent probe
for thiophenols. Angewandte Chemie International Edition 2007;46:
8445e8.
(22):9659e63.
[53] Hong V, Kislukhin AA, Finn MG. Thiol-selective fluorogenic probes for labeling
and release. Journal of American Chemical Society 2009;131(29):9986e94.
[54] Kostiainen MA, Rosilo H. Low-molecular-weight dendrons for DNA binding
and release by reduction-triggered degradation of multivalent interactions.
Chemistry A European Journal 2009;15(23):5656e60.
[55] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury
ion. Chemical Communication 2005;25:3156e8.
[37] Bouffard J, Kim Y, Swager TM, Weissleder R, Hilderbrand SA.
A highly
selective fluorescent probe for thiol bioimaging. Organic Letters 2008;10(1):
37e40.
[56] Huang XM, Guo ZQ, Zhu WH, Xie YS, Tian H. A colorimetric and fluorescent
turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-
chromene framework. Chemical Communication 2008;41:5143e5.
[57] Wang SP, Deng WJ, Sun D, Yan M, Zheng H, Xu JG. A colorimetric and
fluorescent merocyanine-based probe for biological thiols. Organic & Biomo-
[58] Wang H, Helgeson R, Ma B, Wudl F. Synthesis and optical properties of cross-
conjugated bis(dimethylaminophenyl)pyridylvinylene derivatives. The Journal
of Organic Chemistry 2000;65(18):5862e7.
[38] Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y. Rhodamine-based fluorogenic
probe for imaging biological thiol. Bioorganic & Medicinal Chemistry Letters
2008;18:2246e9.
[39] Ji SM, Yang J, Yang Q, Liu SS, Chen MD, Zhao JZ. Tuning the intramolecular
charge transfer of alkynylpyrenes: effect on photophysical properties and its
application in design of OFFeON fluorescent thiol probes. The Journal of
Organic Chemistry 2009;74(13):4855e65.
[40] Root P, Mutus B. O-Aminobenzoyl-S-nitrosohomocysteine, a fluorogenic probe
for cell-surface thiol determinations via a microtiter plate assay. Analytical
Biochemistry 2003;320:299e302.
[59] Rosania GR, Lee JW, Ding L, Yoon HS, Chang YT. Combinatorial approach to
organelle-targeted fluorescent library based on the styryl scaffold. Journal of
American Chemical Society 2003;125(5):1130e1.