Titanium(IV) Chloride-Mediated Carbocyclization of 1,6-Enynes
China (973)-2009CB825300, the Fundamental Research Funds for
the Central Universities and the National Natural Science Founda-
tion of China for financial support (grant numbers 21072206,
20472096, 20872162, 20672127, 20821002, and 20732008) and Mr.
Jie Sun for performing X-ray diffraction.
tion (1)]. Compound 4a which is derived from 1,5-acyloxy
migration remained unchanged in the presence of TiCl4
[Equation (2)].[12a] Moreover, compound 3a could not be
isomerized to 2a upon treatment with 1.05 equiv. TiCl4 at
room temperature [Equation (3)].[14] Treatment of com-
pound 2a with TiCl4 (1.05 equiv.) could also not afford al-
lene 3a under the standard conditions [Equation (4)].
Based on above studies, we proposed a mechanism for
the TiCl4-mediated carbocyclization in Scheme 1.[15] Coor-
dination of the ester group to TiCl4 gives intermediate A.
The nucleophilic intramolecular addition of the pendant
olefin to the alkyne along with acyloxy group leaving af-
fords carbocation B, which contains a vinylidene moiety.[12a]
At low temperature, the chloride ion from the metal is
transferred to incipient benzylic carbocation to produce
chlorinated allene 3 (path a).[16] Due to the stability of the
benzylic cation, the intermediate B could be isomerized to
vinyl cation C at elevated temperature, which then un-
dergoes chloride ion transfer from the metal to generate
the chlorinated 3-azabicyclo[3.1.0]hexane 2 (path b). Steric
hindrance effect occurs at intermediate C when R2/R3 are
sterically bulky substituents.
[1] a) C. H. M. Amijs, C. Ferrer, A. M. Echavarren, Chem. Com-
mun. 2007, 698–700; b) C. H. M. Amijs, V. Lopez-Carrillo, M.
Raducan, P. Perez-Galan, C. Ferrer, A. M. Echavarren, J. Org.
Chem. 2008, 73, 7721–7730; c) A. Escribano-Cuesta, V. Lopez-
Carrillo, D. Janssen, A. M. Echavarren, Chem. Eur. J. 2009, 15,
5646–5650; d) E. Genin, L. Leseurre, P. Y. Toullec, J. P. Genet,
V. Michelet, Synlett 2007, 1780–1784; e) E. Jimenez-Nunez,
A. M. Echavarren, Chem. Commun. 2007, 333–346.
[2] a) S. M. Abu Sohel, R. S. Liu, Chem. Soc. Rev. 2009, 38, 2269–
2281; b) S. Y. Kim, Y. Park, Y. K. Chung, Angew. Chem. 2010,
122, 425–428; Angew. Chem. Int. Ed. 2010, 49, 415–418; c) M.
Mendez, M. P. Munoz, A. M. Echavarren, J. Am. Chem. Soc.
2000, 122, 11549–11550; d) X. Moreau, J. P. Goddard, M. Ber-
nard, G. Lemiere, J. M. Lopez-Romero, E. Mainetti, N.
Marion, V. Mouries, S. Thorimbert, L. Fensterbank, M. Mal-
acria, Adv. Synth. Catal. 2008, 350, 43–48; e) P. Y. Toullec,
C. M. Chao, Q. Chen, S. Gladiali, J. P. Genet, V. Michelet, Adv.
Synth. Catal. 2008, 350, 2401–2408.
[3] a) A. Goeke, M. Sawamura, R. Kuwano, Y. Ito, Angew. Chem.
1996, 108, 686–687; Angew. Chem. Int. Ed. Engl. 1996, 35, 662–
663; b) Y. Nakai, T. Kimura, Y. Uozumi, Synlett 2006, 3065–
3068; c) B. M. Trost, M. Lautens, J. Am. Chem. Soc. 1985, 107,
1781–1783; d) Q. G. Zhang, W. Xu, X. Y. Lu, J. Org. Chem.
2005, 70, 1505–1507; e) J. Marco-Martinez, V. Lopez-Carrillo,
E. Bunuel, R. Simancas, D. J. Cardenas, J. Am. Chem. Soc.
2007, 129, 1874–1875.
[4] a) C. P. Chung, C. C. Chen, Y. C. Lin, Y. H. Liu, Y. Wang, J.
Am. Chem. Soc. 2009, 131, 18366–18375; b) J. W. Faller, P. P.
Fontaine, J. Organomet. Chem. 2006, 691, 1912–1918; c) B. M.
Trost, F. D. Toste, J. Am. Chem. Soc. 1999, 121, 9728–9729; d)
B. M. Trost, F. D. Toste, J. Am. Chem. Soc. 2002, 124, 5025–
5036.
[5] a) H. Kim, C. B. Lee, J. Am. Chem. Soc. 2005, 127, 10180–
10181; b) S. Y. Kim, Y. K. Chung, J. Org. Chem. 2010, 75,
1281–1284; c) A. W. Lei, J. P. Waldkirch, M. S. He, X. M.
Zhang, Angew. Chem. 2002, 114, 4708–4711; Angew. Chem. Int.
Ed. 2002, 41, 4526–4529; d) T. Miura, M. Shimada, M. Murak-
ami, J. Am. Chem. Soc. 2005, 127, 1094–1095; e) X. F. Tong,
D. Li, Z. G. Zhang, X. M. Zhang, J. Am. Chem. Soc. 2004,
126, 7601–7607.
[6] a) N. Chatani, H. Inoue, T. Morimoto, T. Muto, S. Murai, J.
Org. Chem. 2001, 66, 4433–4436; b) S. Kezuka, T. Okado, E.
Niou, R. Takeuchi, Org. Lett. 2005, 7, 1711–1714; c) T. Shib-
ata, Y. Kobayashi, S. Maekawa, N. Toshida, K. Takagi, Tetra-
hedron 2005, 61, 9018–9024; d) T. Shibata, M. Yamasaki, S.
Kadowaki, K. Takagi, Synlett 2004, 2812–2814.
Conclusions
In conclusion, we have reported a novel TiCl4-mediated
carbocyclization of 1,6-enynes containing propargylic ester
moiety. By controlling the reaction temperature, 3-azabicy-
clo[3.1.0]hexanes and functionalized allenes could be syn-
thesized respectively in moderate to good yields along with
moderate to high diastereoselectivities. Further investiga-
tion on the mechanism of TiCl4-mediated carbocyclization
and the extension of this procedure to other carbon-carbon
bond forming reactions are in progress.
Experimental Section
General Procedure for the Preparation of 2 or 3: A solution of TiCl4
(1.0 m in 1,2-dichloroethane, 1.70 equiv.) was added dropwise to a
solution of 1 (0.20 mmol, 1.00 equiv.) in anhydrous 1,2-dichloroe-
thane (1.6 mL) under Ar at room temperature (25 °C) or at –20 °C.
The resulting reaction mixture was stirred for over 2 min and the
reaction was monitored by TLC. When all the starting material
consumed, the mixture was quenched by addition of saturated
aqueous NaHCO3 solution (5.0 mL). After filtration, the filtrate
was extracted with dichloromethane (5.0 mLϫ2) and dried with
anhydrous Na2SO4. The solvent was removed under reduced pres-
sure and the residue was purified by flash silica gel chromatography
to give compound 2 or 3 (eluent: ethyl acetate/petroleum ether,
1:10, products 2 and 3 have the same Rf value, some unidentified
byproducts could not be separated in pure form by silica gel col-
umn chromatography).
[7] M. Nishizawa, V. K. Yadav, M. Skwarczynski, H. Takao, H.
Imagawa, T. Sugihara, Org. Lett. 2003, 5, 1609–1611.
[8] a) G. W. Kabalka, Y. H. Ju, Z. Z. Wu, J. Org. Chem. 2003, 68,
7915–7917; b) G. W. Kabalka, Z. Z. Wu, Y. H. Ju, Org. Lett.
2002, 4, 3415–3417; c) T. Y. Li, W. Cui, J. G. Liu, J. Z. Zhao,
Z. M. Wang, Chem. Commun. 2000, 139–140; d) T. Okauchi,
T. Kakiuchi, N. Kitamura, T. Utsunomiya, J. Ichikawa, T. Min-
ami, J. Org. Chem. 1997, 62, 8419–8424; e) T. Tsuritani, S. Ito,
H. Shinokubo, K. Oshima, J. Org. Chem. 2000, 65, 5066–5068;
f) C. M. Marson, A. Khan, J. McGregor, T. J. Grinter, Tetrahe-
dron Lett. 1995, 36, 7145–7148; g) C. M. Marson, J. McGregor,
A. Khan, R. J. Grinter, J. Org. Chem. 1998, 63, 7833–7839; h)
D. Facoetti, G. Abbiati, E. Rossi, Eur. J. Org. Chem. 2009,
2872–2882.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, compound characterization data
and X-ray crystal data of anti-2a and anti-3p.
Acknowledgments
[9] a) M. J. C. Buckle, I. Fleming, S. Gil, K. L. C. Pang, Org. Bi-
omol. Chem. 2004, 2, 749–769; b) S. Hosokawa, M. Isobe, Syn-
lett 1995, 1179–1180; c) S. Hosokawa, B. Kirschbaum, M.
We thank the Shanghai Municipal Committee of Science and Tech-
nology (08dj1400100-2), National Basic Research Program of
Eur. J. Org. Chem. 2011, 2610–2614
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2613