2874
Acknowledgements
This research was supported by DGICYT (PB96-0822 and AGF98-0805-CO2-02) and CAM
(08.5/0046/1998). We also thank Janssen-Cilag for additional support.
References
1. Taken in part from the MS Thesis of P.M.
2. (a) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron 1984, 40, 2247–2255. (b) For a recent review, see: Cha, J. K.; Kim, N.-S.
Chem. Rev. 1995, 95, 1761–1795. (c) For a computational treatment, see: Haller, J.; Strassner, T.; Houk, K. N. J. Am. Chem.
Soc. 1997, 119, 8031–8034. (d) For an exception to this trend using stoichiometric conditions, see: Donohoe, T. J.; Moore,
P. R.; Waring, M. J.; Newcombe, N. J. Tetrahedron Lett. 1997, 38, 5027–5030. (e) For enhanced selectivities in some cases,
see: Donohoe, T. J.; Waring, M. J.; Newcombe, N. J. Synlett 2000, 149–151.
3. (a) Allen, J. V.; Cappi, M. W.; Kary, P. D.; Roberts, S. M.; Williamson, N. M.; Wu, L. E. J. Chem. Soc., Perkin Trans. 1 1997,
3297–3298. (b) Allen, J. V.; Bergeron, S.; Griffiths, M. J.; Mukherjee, S.; Roberts, S. M.; Williamson, N. M.; Wu, L. E. J.
Chem. Soc., Perkin Trans. 1 1998, 3171–3179. (c) Kim, N.-S.; Choi, J.-R.; Cha, J. K. J. Org. Chem. 1993, 58, 7096–7099.
4. For a review, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.
5. Xiang, A. X.; Watson, D. A.; Ling, T.; Theodorakis, E. A. J. Org. Chem. 1998, 63, 6774–6775.
6. Fernández de la Pradilla, R.; Méndez, P.; Priego, J.; Viso, A. J. Chem. Soc., Perkin Trans. 1 1999, 1247–1249.
7. Cossy, J.; Blanchard, N.; Meyer, C. Tetrahedron Lett. 1999, 40, 8361–8364.
8. See footnote 11 of Ref. 6.
9. Li, K.; Hamann, L. G.; Koreeda, M. Tetrahedron Lett. 1992, 33, 6569–6570.
10. A variety of reducing agents were tested with mediocre selectivities. Complete details will be published in a full account of
this work.
11. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973–1976.
12. To facilitate evaluation of the data, the crude osmylation mixtures (5% OsO4, 3 equiv. Me3NO, 9:1 acetone:water, rt)
were filtered through silica gel (gradient elution, 5–80% MeOH:EtOAc) and acetylated (Ac2O, Et3N, DMAP, CH2Cl2, rt).
1
The diastereomeric ratios were determined by integration of well resolved signals in the H NMR of the crude mixtures.
All products described here have been fully characterized. These stereochemical assignments are tentative and rely on
examination of molecular models and on careful correlations of the 1H and 13C NMR data of our products, particularly 12,
with related oxiranes obtained by allylation of an epoxy aldehyde (Ref. 6) and with literature precedence (Nikitenko, A. N.;
Arshava, B. M.; Taran, I. G.; Mikerin, I. E.; Shvets, V. I.; Raifeld, Y. E.; Lang Jr., S. A.; Lee, V. J. Tetrahedron 1998, 54,
11 731–11 740. We are currently seeking confirmation to these assignments in the context of developing applications of the
1
methodology. Data of 12: Rf=0.16 (30% EtOAc–hexane). [α]D20=+19.7 (c 0.38, CHCl3). H NMR (CDCl3, 300 MHz) δ
2.05 (s, 3H, CH3 Ac), 2.07 (s, 3H, CH3 Ac), 2.08 (s, 3H, CH3 Ac), 2.41 (s, 3H, CH3 p-Tol), 3.82 (dd, 1H, J=12.4, 5.2 Hz,
H-β0), 4.09 (d, 1H, J=8.9 Hz, H-3), 4.12 (dd, 1H, J=12.4, 3.2 Hz, H-β0), 5.02 (ddd, 1H, J=8.7, 5.2, 3.2 Hz, H-α0), 6.40 (s,
1H, H-α), 7.20–7.27 (m, 5H, ArH), 7.35–7.38 (m, 2H, ArH), 7.57 (d, 2H, J=8.3 Hz, ArH). 13C NMR (CDCl3, 50 MHz) δ
20.6, 20.6, 20.8, 21.7, 59.5, 62.6, 67.7, 69.7, 76.7, 127.1 (2C), 128.4 (2C), 128.8, 129.5 (2C), 129.8, 133.8, 134.0, 145.4,
169.0, 169.5, 170.2. IR (film): 3040, 3000, 2920, 1730, 1580, 1480, 1430, 1350, 1310, 1200, 1130, 1070, 1030, 800, 740,
710, 680, 650 cm−1. EM (electrospray): 513 [M+Na]+ (100%).
13. Conformation D follows Vedejs’ model for dihydroxylation of allylic ethers, which is the commonly accepted model for
most acyclic cases. See: Vedejs, E.; McClure, C. K. J. Am. Chem. Soc. 1986, 108, 1094–1096.