Y.-L. Li et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5176–5182
Table 6. Stability of 1H-pyrazolo[4,3-d]pyrimidin-7(6H)-ones
5181
with activity comparable to that of the clinical candi-
date, razaxaban. However, in aqueous solution stability
studies, these compounds were found to undergo vari-
able degrees of hydrolytic cleavage of the pyrimidinone
ring to generate pyrazole-5-carboxamide degradants.
While this core series is still promising, a major empha-
sis has been geared toward finding bicyclic cores with
greater aqueous stability.9b,14 Further efforts along these
lines will be described in due course.
R3
R3
R3
NHCOR5
H
NH2
H
N
N
O
R5
Ar
N
N
N
N
N
N
N
N
Ar
Ar
pH=4.0
(0.1M acetate)
O
O
pH=1.0
(0.1N HCl)
NH2
NH2
NH2
O
O
O
N
N
N
I
II
III
pH=1.0 (0.1N HCl)
Compounda Conditionsa I remainingb (%) IIb (%) IIIb (%)
Acknowledgments
19a
19f
23a
pH 1.0
pH 4.0
97.2
90.1
0.6
8.5
2.4
0.12
The authors thank Bruce Aungst, Frank Barbera, Tracy
Bozarth, Earl Crain, Andrew Leamy, Dale McCall, and
Carol Watson for technical assistance.
pH 1.0
pH 4.0
89.7
94.7
5.5
3.4
1.4
—
pH 1.0
pH 4.0
83.2
72.3
1.3
23.4
5.6
—
a pH 1.0 = 0.1 N HCl buffer; pH 4.0 = 0.1 M acetate buffer. Stability
studies were conducted at 40 ꢁC with an initial concentration of 5 lg/
mL.
b Values of % I–III were determined by HPLC after 2 days. The
identities of II and III were determined by LC/MS.
References and notes
1. (a) Hirsh, J.; O’Donell, M.; Weitz, J. I. Blood 2005, 105,
453; (b) Golino, P.; Loffredo, F.; Riegler, L.; Renzullo, E.;
Cocchia, R. Curr. Opin. Invest. Drugs 2005, 6, 298; (c)
Quan, M. L.; Smallheer, J. J. Curr. Opin. Drug Discov.
Develop. 2004, 7, 460.
2. (a) Drout, L.; Bal dit Sollier, C. Eur. J. Clin. Invest. 2005,
35(Suppl. 1), 21; (b) Mann, K. G.; Butenas, S.; Brummel,
K. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 17; (c)
Leadley, R. J., Jr. Curr. Top. Med. Chem. 2001, 1, 151.
3. (a) Wong, P. C.; Crain, E. J.; Watson, C. A.; Zaspel, A.
M.; Wright, M. R.; Lam, P. Y. S.; Pinto, D. J.; Wexler, R.
R.; Knabb, R. M. J. Pharmacol. Exp. Ther. 2002, 303, 993;
(b) Wong, P. C.; Pinto, D. J.; Knabb, R. M. Cardiovasc.
Drug Rev. 2002, 20, 137.
4. (a) Rajagopal, V.; Bhatt, D. L. J. Thromb. Haem. 2005, 3,
436; (b) Viles-Gonzalez, J. F.; Gaztanaga, J.; Zafar, U.
M.; Fuster, V.; Badimon, J. J. Am. J. Cardiovasc. Drugs
2004, 4, 379.
5. (a) Quan, M. L.; Lam, P. Y. S.; Han, Q.; Pinto, D. J.; He,
M.; Li, R.; Ellis, C. D.; Clark, C. G.; Teleha, C. A.; Sun, J.
H.; Alexander, R. S.; Bai, S. A.; Luettgen, J. M.; Knabb,
R. M.; Wong, P. C.; Wexler, R. R. J. Med. Chem. 2005,
48, 1729; (b) Lessen, M. R.; Davidson, B. L.; Gallus, A.;
Pineo, G.; Ansell, J.; Deitchman, D. Blood 2003, 102, 15a,
Abstract 41.
6. Pruitt, J. R.; Pinto, D. J. P.; Galemmo, R. A., Jr.;
Alexander, R. S.; Rossi, K. A.; Wells, B. L.; Drummond,
S.; Bostrom, L. L.; Burdick, D.; Bruckner, R.; Chen, H.;
Smallwood, A.; Wong, P. C.; Wright, M. R.; Bai, S.;
Luettgen, J. M.; Knabb, R. M.; Lam, P. Y. S.; Wexler, R.
R. J. Med. Chem. 2003, 46, 5298.
7. Fevig, J. M.; Cacciola, J.; Buriak, J., Jr.; Rossi, K. A.;
Knabb, R. M.; Luettgen, J. M.; Wong, P. C.; Bai, S. A.;
Wexler, R. R.; Lam, P. Y. S. Bioorg. Med. Chem. Lett.
2006, 16, 3755.
8. Wong, P. C.; Quan, M. L.; Crain, E. J.; Watson, C. A.;
Wexler, R. R.; Knabb, R. M. J. Pharmacol. Exp. Ther.
2000, 292, 351.
9. (a) Lam, P. Y. S.; Clark, C. G.; Li, R.; Pinto, D. J. P.;
Orwat, M. J.; Galemmo, R. A.; Fevig, J. M.; Teleha, C.
A.; Alexander, R. S.; Smallwood, A. M.; Rossi, K. A.;
Wright, M. R.; Bai, S. A.; He, K.; Luettgen, J. M.; Wong,
P. C.; Knabb, R. M.; Wexler, R. R. J. Med. Chem. 2003,
46, 4405; (b) Pinto, D. J. P.; Orwat, M. J.; Quan, M. L.;
Han, Q.; Galemmo, R. A., Jr.; Amparo, E.; Wells, B.;
Ellis, C.; He, M. Y.; Alexander, R. S.; Rossi, K. A.;
Smallwood, A.; Wong, P. C.; Luettgen, J. M.; Rendina, A.
complete conversion to the amine III, while samples
remaining at pH 4.0 still showed a preponderance of
II. Thus, it appears that at both pH 1.0 and 4.0, initial
formation of II occurs, but only at pH 1.0 is II further
hydrolyzed appreciably to III. The degradation of 19f
is similar to that of 19a, with II (R5 = Me) being the ma-
jor component at pH 4.0. At pH 1.0 an appreciable
amount of II remains, while conversion to III is slower.
This observation presumably reflects the slower acid
hydrolysis of an N-acetyl group relative to an N-formyl
group. The 3-trifluoromethylpyrazole analog 23a under-
goes a more rapid decomposition than the 3-methylpy-
razole analogs, with 23% conversion to II at pH 4.0
after 2 days. Apparently, the CF3 group is activating
the pyrimidinone ring toward the initial hydrolysis,
thereby accelerating the decomposition. The observed
formation of II and III in these studies of 19a, 19f,
and 23a leads to the possibility that the free P4 aniline
could still be generated in vivo, although this risk is
slight, since it would require further hydrolysis of an
amide such as III, which can be viewed as a vinylogous
urea. The free P4 aniline was not observed in these
stability studies. Still, advancement of this series would
require use of an Ames negative P4 aniline.
In summary, several examples of pyrazole-fused bicyclic
core fXa inhibitors in the 3-aminobenzisoxazole P1 ser-
ies have been described. The 1H-pyrazolo[4,3-d]pyrimi-
din-7(6H)-one core is especially promising as a means
to maintain potent fXa inhibition while also reducing
the probability that in vivo amide hydrolysis will liberate
a biarylaniline fragment. Within this series, analogs 19f,
19g, and 23b are not only potent fXa inhibitors, but they
are also highly selective versus relevant serine proteases.
Compound 23b has a favorable pharmacokinetic profile
in dogs, with lower clearance and longer half-life relative
to razaxaban. Furthermore, 19f,19g, and 23b are highly
efficacious in the rabbit A-V shunt thrombosis model,