Photochemistry and Photobiology, 2009, 85 907
Table A1. Mass spectra of SiF3Cl and SiF3CH2Cl. Each mass
spectrum was normalized to its most intensive line.
14. Polianski, M., O. V. Boyarkin, T. R. Rizzo, V. M. Apatin,
V. B. Laptev and E. A. Ryabov (2003) Infrared laser chemistry of
trichlorosilane in view of silicon isotope separation. J. Phys.
Chem. A 107, 8578–8583.
m ⁄ e
SiF3Cl
SiF3CH2Cl
m ⁄ e
SiF3Cl
SiF3CH2Cl
15. Gorelik, S. R., E. N. Chesnokov, L. V. Kuibida, R. R. Akberdin
and A. K. Petrov (2004) Infrared multiphoton dissociation of
difluorosilane. Appl. Phys. B 78, 119–125.
16. Petrov, A. K., A. V. Chernyshev, E. N. Chesnokov, S. R. Gorelik,
L. V. Kuibida, K. Nomaru and H. Kuroda (2002) Separation of
silicon isotopes in IR multiphonon dissociation of trifluorophe-
nylsilane induced by a free-electron laser. Doklady Akademii Nauk
385(5), 638. [In Russian]
17. Chernyshev, A. V., K. Nomaru, A. K. Petrov, E. N. Chesnokov,
S. R. Gorelik, L. V. Kuibida, R. R. Akberdin and H. Kuroda (2003)
Isotope selective dissociation of phenyltrifluorosilane under free
electron laser irradiation. J. Phys. Chem. A 107(44), 9362–9367.
18. Baranov, V. Y., A. P. Dyad’kin and V. A. Kuz’menko (1990)
Isotopically selective dissociation of CH3SiF3 and C6H5SiF3
molecules by CO2 laser pulses. J. Quantum Electron. 20, 450. [In
Russian]
19. Koshlyakov, P. V., E. N. Chesnokov, S. R. GorelikandA. K. Petrov
(2006) Infrared multiphoton dissociation of methyltrifluorosilane.
Russ. J. Phys. Chem. B 25(5), 22.
20. Alimpiev, S. S., A. M. Velichko, S. M. Nikiforov, G. L. Odo-
bashyan, B. G. Sartakov and S. V. Sin’ko (1988) Time-of-flight
photo-ionization of products of infrared dissociation of silicon
containing molecules. Pis’ma v Zhurnal Tekhnicheskoi Fiziki 14,
1786. [In Russian]
85
86
87
98
100
4.3
28.9
1.50
0.95
1.58
70.3
4.99
5.23
0.23
0.74
0.15
2.03
15.5
1.64
5.30
0.10
0.03
0.03
26
27
28
31
32
33
34
35
47
48
49
50
51
52
61
62
63
66
67
69
79
80
81
82
83
6.46
1.61
3.68
0.08
0.21
0.48
2.42
1.09
0.78
50.7
0.51
2.27
26.4
5.87
34.8
1.88
10.6
0.14
0.11
0.09
0.28
4.90
6.20
1.54
0.63
1.12
0.97
0.28
0.27
2.03
0.15
0.55
1.19
38.6
3.09
11.8
1.15
99
100
101
102
103
104
114
115
116
117
120
121
122
123
124
132
133
134
135
136
137
138
0.60
3.87
7.00
0.40
0.48
0.12
0.22
0.69
0.73
1.37
1.26
2.90
0.17
74.1
3.38
25.7
1.08
0.54
1.30
2.98
100
7.08
35.5
2.02
1.08
0.18
0.15
0.13
1.15
1.73
21. Koshliakov, P. V., S. R. Gorelik, E. N. Chesnokov, A. V. Voro-
biev and A. K. Petrov (2006) Infrared multiphoton dissociation of
vinyltrifluorosilane. Appl. Phys. B 84, 529.
22. Laptev, V. B., L. M. Tumanova and E. A. Ryabov (1998) Selective
dissociation of Si(OCH3)4 and [(CH3)3Si]2O molecules under
action of pulsed CO2 laser radiation. High Energy Chem. 32, 108.
[In Russian]
23. Fishwick, G., R. N. Haszeldine, C. Parkinson, P. J. Robinson and
R. F. Simmons (1965) Kinetics of the thermal decomposition of
polyfluoroalkylsilicon compounds. J. Chem. Soc, Chem. Common.,
382.
24. Bevan, W. I., R. N. Haszeldine, J. Middleton and A. E. Tipping
(1970) Novel thermal rearrangements involving interchange bet-
ween groups on silicon and those on its a-carbon. J. Organomet.
Chem. 23, 17.
25. Haszeldine, R. N., P. J. Robinson and R. F. Simmons (1967)
The kinetics of the reactions of silicon compounds. Part II. The
gas-phase thermal decomposition of 3,3,3-trifluoropropyltrifluo-
rosilane. J. Chem. Soc. B, 1357.
26. Haszeldine, R. N., P. J. Robinson and R. F. Simmons (1964) The
kinetics of the reaction of silicon compounds. Part I. The gas-
phase thermal decomposition of 2,2-difluoroethyltrifluorosilane.
J. Chem. Soc. B, 1890.
27. Graham, D., R. N. Haszeldine and P. J. Robinson (1971) Kinetics
of the reactions of silicon compounds. Part VII. Unimolecular gas-
phase thermal decomposition of 2,2-difluoroethyltrimethoxysi-
lane. J. Chem. Soc. B, 611.
REFERENCES
1. Ruf, T., R. W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona,
H. J. Pohl, G. G. Devyatych and P. G. Sennikov (2000) Thermal
conductivity of isotopically enriched silicon. Sol. St. Commun.
115, 243.
2. Kremer, R. K., K. Graf, M. Cardona, G. G. Devyatykh,
A. V. Gusev, A. M. Gibin, A. V. Inyushkin, A. N. Taldenkov and
H.-J. Pohl (2000) Thermal conductivity of isotopically enriched
28Si: Revisited. Sol. St. Commun. 131, 499.
3. Business Wire. FindArticles.com (2004) Isotopically Pure Silicon-
28 Recognized by International Semiconductor Industry. Avail-
March_9/ai_114045413. Accessed on 9 March 2004.
4. Bagratashvili, V. N., V. S. Letokhov, A. A. Makarov and
E. A. Ryabov (1985) Multiple Photon Infared Laser Photophysics
and Photochemistry. Harwood Academic Publ., New York.
5. Letokhov, V. S. (1989) Laser Spectroscopy of Highly Vibrationally
Excited Molecules. Adam-Hilger, Bristol.
6. Lide, D. R. (ed.) (1998) CRC Handbook of Chemistry and Physics,
79th edn, CRC Press, Boca Raton, FL.
7. Lyman, J. L. and S. D. Rockwood (1976) Enrichment of boron,
carbon, and silicon isotopes by multiple-photon absorption of
10.6 lm laser radiation. J. Appl. Phys. 47, 595–601.
8. Serdyuk, N. K., E. N. Chesnokov and V. N. Panfilov (1981)
Vibrational excitation effects on silane reactivity in its reaction
with bromine atoms. React. Kinet. Catal. Lett. 17, 19.
9. Kamioka, M., S. Arai, Y. Ishikawa, S. Isomura and N. Takamiya
(1985) 29Si and 30Si enrichment by IR MPD of Si2F6. Chem. Phys.
Lett. 119, 357–360.
10. Kamioka, M., Y. Ishikawa, H. Kaetsu, S. Isomura and S. Arai
(1986) Isotope-selective infrared multiple photon decomposition
of hexafluorodisilane. J. Phys. Chem. 90, 5727–5730.
11. Suzuki, H., H. Araki and T. Noda (1997) Enrichment of silicon
isotopes by infrared laser irradiation. J. Jpn. Inst. Met. 61, 145.
12. Lyman, J. L., B. E. Newman, T. Noda and H. Suzuki (1999)
Enrichment of silicon isotopes with infrared free-electron laser
radiation. J. Phys. Chem. A 103, 4227–4232.
28. Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Mont-
gomery Jr, R. E. Stratmann, J. C. Burant, S. Dapprich,
J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci,
C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson,
P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong,
J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople
(1998) Revision A.6–A.11. Gaussian, Inc., Pittsburgh, PA.
29. Becke, A. D. (1993) Density-functional thermochemistry. III. The
role of exact exchange. J. Chem. Phys. 98, 5648.
30. Lee, C., W. Yang and R. G. Parr (1988) Development of the
Colle-Salvetti correlation-energy formula into a functional of the
electron density. Phys. Rev. B 37, 785.
13. Arai, S., H. Kaetsu and S. Isomura (1991) Practical separation
of silicon isotopes by IRMPD of Si2F6. Appl. Phys. B 53, 199–202.