10.1002/anie.202106566
Angewandte Chemie International Edition
COMMUNICATION
Chem. Int. Ed. 2020, 59, 18166; Angew. Chem. 2020, 132, 18323; g) T.
Yang, Y. Sun, H. Wang, Z. Lin, J. Wen, X. Zhang, Angew. Chem. Int. Ed.
2020, 59, 6108; Angew. Chem. 2020, 132, 6164.
2a to the corresponding products can be controlled depending on
the choice of reduction conditions (Scheme 4a-c). The obtained
2a could be converted to Z- and E-allylic amides (2a’ and 2a’’) via
[4]
Recent representative examples: a) S. Ponra, J. Yang, S. Kerdphon, P.
G. Andersson, Angew. Chem. Int. Ed. 2019, 58, 9282; Angew. Chem.
2019, 131, 9383; b) J. Zhang, J. Jia, X. Zeng, Y. Wang, Z. Zhang, I. D.
Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2019, 58, 11505; Angew.
Chem. 2019, 131, 11629.
.
treatment with Ni(OAc)2 4H2O/NaBH4/H2 and LiAlH4, respectively.
Reduction of 2a using Pd-C/H2 conditions provided the alkyl-
substituted chiral amide 3. All the reduced products maintained
their high enantiopurities. The acetyl group in 2a can be easily
removed by treatment with Schwartz reagent and further
derivation of the obtained primary propargylamine afforded a
bioactive amide 4 with 99.7% ee (Scheme 4d).[13] Furthermore, a
substrate 1z bearing a silyl group was hydrogenated to provide
the corresponding product 2z with 99% yield and 99.7% ee
(Scheme 4 down). Removal of the TMS group of 2z generated the
key intermediate 5, which can be directly used in a Sonogashira
coupling for the synthesis of a selective ACC2 inhibitor 6[14] or in
a Click reaction[15] for the construction of chiral triazole compound
7 in quantitative yields (Scheme 4e-f).
[5]
[6]
a) T.-L. Liu, C.-J. Wang, X. Zhang, Angew. Chem. Int. Ed. 2013, 52,
8416; Angew. Chem. 2013, 125, 8574; b) N. W. Boaz, Tetrahedron Lett.
1998, 39, 5505.
a) S. Takeuchi, Y. Ohgo, J. Yoshimura, Chem. Lett. 1973, 2, 265; b) S.
Monfette, Z. R. Turner, S. P. Semproni, P. J. Chirik, J. Am. Chem. Soc.
2012, 134, 4561; c) M. R. Friedfeld, M. Shevlin, J. M. Hoyt, S. W. Krska,
M. T. Tudge, P. J. Chirik, Science 2013, 342, 1076; d) M. R. Friedfeld, M.
Shevlin, G. W. Margulieux, L.-C. Campeau, P. J. Chirik, J. Am. Chem.
Soc. 2016, 138, 3314; e) M. R. Friedfeld, H. Zhong, R. T. Ruck, M.
Shevlin, P. J. Chirik, Science 2018, 360, 888; f) H. Zhong, M. R. Friedfeld,
P. J. Chirik, Angew. Chem. Int. Ed. 2019, 58, 9194; Angew. Chem. 2019,
131, 9292; g) P. Viereck, S. Krautwald, T. P. Pabst, P. J. Chirik, J. Am.
Chem. Soc. 2020, 142, 3923; h) H. Zhong, M. Shevlin, P. J. Chirik, J. Am.
Chem. Soc. 2020, 142, 5272; i) J. Chen, C. Chen, C. Ji, Z. Lu, Org. Lett.
2016, 18, 1594; j) J. Guo, X. Shen, Z. Lu, Angew. Chem. Int. Ed. 2017,
56, 615; Angew. Chem. 2017, 129, 630; k) J. Guo, B. Cheng, X. Shen,
Z. Lu, J. Am. Chem. Soc. 2017, 139, 15316; l) X. Du, Y. Xiao, J.-M.
Huang, Y. Zhang, Y.-N. Duan, H. Wang, C. Shi, G.-Q. Chen, X. Zhang,
Nat. Commun. 2020, 11, 3239; m) X. Du, Y. Xiao, Y. Yang, Y.-N. Duan,
F. Li, Q. Hu, L. W. Chung, G.-Q. Chen, X. Zhang, Angew. Chem. Int. Ed.
2021, 60, 11384; Angew. Chem. 2021, 133, 11485.
In conclusion, we have developed the first efficient Co-catalyzed
chemo- and enantioselective hydrogenation of conjugated
enynes. The chiral propargylamines were obtained in high yields
and with excellent enantioselectivities (up to 99.9% ee and 2000
TON) and further utilized for several valuable transformations. A
plausible CoI/CoIII catalytic cycle has been proposed and the
activating effect of the accompanying Zn2+ generated from the
zinc reduction of the CoII complex has been confirmed.
[7]
[8]
Y. Hu, Z. Zhang, J. Zhang, Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem.
Int. Ed. 2019, 58, 15767; Angew. Chem. 2019, 131, 15914.
Selected examples of Earth-abundant metal-catalyzed asymmetric
transformations: a) H. Xu, P. Yang, P. Chuanprasit, H. Hirao, J. S. Zhou,
Angew. Chem. Int. Ed. 2015, 54, 5112; Angew. Chem. 2015, 127, 5201;
b) H. A. Wen, X. L. Wan, Z. Huang, Angew. Chem. Int. Ed. 2018, 57,
6319; Angew. Chem. 2018, 130, 6427; c) L. Wu, G. Yang, W. Zhang,
CCS Chem. 2019, 1, 623; d) L. Zhang, Y. Tang, Z. Han, K. Ding, Angew.
Chem. Int. Ed. 2019, 58, 4973; Angew. Chem. 2019, 131, 5027; e) D.
Liu, B. Li, J. Chen, I. D. Gridnev, D. Yan, W. Zhang, Nat. Commun. 2020,
11, 5935; f) M. M. Yamano, A. V. Kelleghan, Q. Shao, M. Giroud, B. J.
Simmons, B. Li, S. Chen, K. N. Houk, N. K. Garg, Nature 2020, 586, 242;
g) L. Zhang, Z. Wang, Z. Han, K. Ding, Angew. Chem. Int. Ed. 2020, 59,
15565; Angew. Chem. 2020, 132, 15695; h) C. Liu, M. Wang, S. Liu, Y.
Wang, Y. Peng, Y. Lan, Q. Liu, Angew. Chem. Int. Ed. 2021, 60, 5108;
Angew. Chem. 2021, 133, 5168; i) W. Huang, F. Meng, Angew. Chem.
Int. Ed. 2021, 60, 2694; Angew. Chem. 2021, 133, 2726; j) C. Wang, K.
Huang, J. Ye, W.-L. Duan, J. Am. Chem. Soc. 2021, 143, 5685.
T. Imamoto, K. Sugita, K. Yoshida, J. Am. Chem. Soc. 2005, 127, 11934.
Acknowledgements
This work was supported by National Key R&D Program of China
(No. 2018YFE0126800), National Natural Science Foundation of
China (Nos. 21620102003, 21831005, 91856106, 21991112,
22071150), and Shanghai Municipal Education Commission (No.
201701070002E00030). We also thank the Instrumental Analysis
Center of Shanghai Jiao Tong University.
Keywords: asymmetric hydrogenation • chemoselectivity •
cobalt • enynes • propargylamines
[1]
Reviews: a) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111,
1713; b) D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev.
2012, 112, 2557; c) Z. Zhang, N. A. Butt, W. Zhang, Chem. Rev. 2016,
116, 14769; d) Z. Zhang, N. A. Butt, M. Zhou, D. Liu, W. Zhang, Chin. J.
Chem. 2018, 36, 443; e) H. Wen, F. Wang, X. Zhang, Chem. Soc. Rev.
2021, 50, 3211.
[9]
[10] CCDC 2082861.
[11] a) J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 2018, 36, 1075; b) W. Ai, R.
Zhong, X. Liu, Q. Liu, Chem. Rev. 2019, 119, 2876.
[12] a) Q. Hu, Z. Zhang, Y. Liu, T. Imamoto, W. Zhang, Angew. Chem. Int. Ed.
2015, 54, 2260; Angew. Chem. 2015, 127, 2288. Similar activating effect
in other Co-catalyzed reactions: b) S. M. Jing, V. Balasanthiran, V. Pagar,
J. C. Gallucci, T. V. RajanBabu, J. Am. Chem. Soc. 2017, 139, 18034; c)
W. Ding, N. Yoshikai, Angew. Chem. Int. Ed. 2019, 58, 2500; Angew.
Chem. 2019, 131, 2522.
[2]
[3]
a) W. S. Knowles, Angew. Chem. Int. Ed. 2002, 41, 1998–2007; Angew.
Chem. 2002, 114, 2096; b) R. Noyori, Angew. Chem. Int. Ed. 2002, 41,
2008; Angew. Chem. 2002, 114, 2108.
Recent representative examples: a) W. Li, T. Wagener, L. Hellmann, C.
G. Daniliuc, C. Mück-Lichtenfeld, J. Neugebauer, F. Glorius, J. Am.
Chem. Soc. 2020, 142, 7100; b) R. Bigler, K. A. Mack, J. Shen, P. Tosatti,
C. Han, S. Bachmann, H. Zhang, M. Scalone, A. Pfaltz, S. E. Denmark,
S. Hildbrand, F. Gosselin, Angew. Chem. Int. Ed. 2020, 59, 2844; Angew.
Chem. 2020, 132, 2866; c) Y. Hu, J. Chen, B. Li, Z. Zhang, I. D. Gridnev,
W. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5371; Angew. Chem. 2020,
132, 5409; d) L. Hu, Y. Zhang, Q.-W. Zhang, Q. Yin, X. Zhang, Angew.
Chem. Int. Ed. 2020, 59, 5321; Angew. Chem. 2020, 132, 5359; e) F.-H.
Zhang, F.-J. Zhang, M.-L. Li, J.-H. Xie, Q.-L. Zhou, Nat. Cat. 2020, 3,
621; f) J. Wang, P.-L. Shao, X. Lin, B. Ma, J. Wen, X. Zhang, Angew.
[13] B. S. Chinta, B. Baire, Eur. J. Org. Chem. 2017, 3381.
[14] Y. G. Gu, M. Weitzberg, R. F. Clark, X. Xu, Q. Li, T. Zhang, T. M. Hansen,
G. Liu, Z. Xin, X. Wang, R. Wang, T. McNally, B. A. Zinker, E. U. Frevert,
H. S. Camp, B. A. Beutel, H. L. Sham, J. Med. Chem. 2006, 49, 3770.
[15] a) F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B.
Sharpless, V. V. Fokin, J. Am. Chem. Soc. 2005, 127, 210; b) L. Xu, J.
Dong, Chin. J. Chem. 2020, 38, 414.
This article is protected by copyright. All rights reserved.