Page 5 of 7
Journal Name
Green Chemistry
DOI: 10.1039/C8GC00209F
on the persistent radical effect while the exclusive formation of
Markovnikov type iodoperoxidates (βꢀiodoperoxidates) was
Mott, A. Tripathi, M. A. Siegler, C. D. Moore, D. J. Sullivan and G. H.
Posner, J. Med. Chem., 2013, 56, 2630; (c) R. Maurya, A. Soni, D.
Anand, M. Ravi, K. S. R. Raju, I. Taneja, N. K. Naikade, S. K. Puri,
Wahajuddin, S. Kanojiya and P. P. Yadav, ACS Med. Chem. Lett., 2013,
4, 165; (d) S. L. Pimlott and A. Sutherland, Chem. Soc. Rev. 2011, 40,
149; (e) N. Kumar, S. I. Khan, M. Sharma, H. Atheaya and D. S. Rawat,
Bioorg. Med. Chem. Lett., 2009, 19, 1675 ; (f) G. L. DeNardo, S. J.
DeNardo, R. T. O'Donnell, L. A. Kroger, D. L. Kukis, C. F. Meares, D. S.
Goldstein and S. Shen, Clin. Lymphoma 2000, 1, 118.
attributed to the formation of
a more stable carbocation
intermediate. The reactions have broad substrate scope, mild
reaction conditions, and high functional group tolerance.
Investigation of the detailed reaction mechanism and potential
medicinal activities is underway in our laboratory.
We thank the Postdoctor Funding of Wuhan University of
Science and Technology (04026301) for financial support.
6
(a) E. Shi, J. Liu, C. Liu, Y. Shao, H. Wang, Y. Lv, M. Ji, X. Bao and X.
Wan, J. Org. Chem., 2016, 81, 5878; (b) B. SchweitzerꢀChaput, J.
Demaerel, H. Engler and M. Klussmann, Angew. Chem., Int. Ed., 2014,
53, 1; (c) WillandꢀCharnley, R.; Puffer, B. W.; Dussault, P. H. J. Am.
Chem. Soc. 2014, 136, 5821; (d) J.ꢀK. Cheng and T.ꢀP. Loh, J. Am.
Chem. Soc. 2015, 137, 42; (e) D. Chaturvedi, A. Goswami, P. P. Saikia,
N. C. Barua and P. G. Rao, Chem. Soc. Rev., 2010, 39, 435; (f) B.
SchweitzerꢀChaput, A. Sud, A. Pinter, S. Dehn, P. Schulze and M.
Klussmann, Angew. Chem., Int. Ed. 2013, 52, 13228.
Notes and references
School of Chemistry and Chemical Engineering, Wuhan University of
Science and Technology, Wuhan 430081, P. R. China. Eꢀmail:
†
Electronic Supplementary Information (ESI) available: Detailed
experimental procedures, characterization of products, and NMR spectral
charts. See DOI: 10.1039/b000000x/
1
2
(a) The Chemistry of Double Bonded Functional Groups; S. Patai, Ed.;
Wiley: Chichester, 1997; (b) R. I. McDonald, G. Liu and S. S. Stahl,
Chem. Rev., 2011, 111, 2981; (c) R. Zhu and S. L. Buchwald, J. Am.
Chem. Soc., 2015, 137, 8069.
7
(a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457; (b) A. O.
Terent'ev, M. M. Platonov, I. B. Krylov, V. V. Chernyshev and G. I.
Nikishin, Org. Biomol. Chem., 2008, 6, 4435; (c) K. K. Sharma, D. I.
Patel and R. Jain, Chem. Commun. 2015, 51, 15129; (d) N. Taniguchi, J.
Org. Chem.2004, 69, 6904; (e) Brendan M. Monks and Silas P. Cook, J.
Am. Chem. Soc., 2012, 134, 15297; (f) I. Scheipers, E. Koch and A.
Studer, Org. Lett., 2017, 19, 1741.
For selected recent papers on difunctionalization of alkenes, see: (a) X.
Pan, A. Boussonnière and D. P. Curran, J. Am. Chem. Soc., 2013, 135,
14433; (b) T. J. Barker, and D. L. Boge, J. Am. Chem. Soc., 2012, 134,
13588; (c) B. Cheng, P. Lu, H. Zhang, X. Cheng, and Z. Lu, J. Am.
Chem. Soc., 2017, 137, 9439; (d) W. J. Jang, S. M. Song, J. H. Moon, J.
Y. Lee and J. Yun, J. Am. Chem. Soc., 2017, 137, 13660; (e) C. Zhang, Z.
Li, L. Zhu, L. Yu, Z. Wang and C. Li, J. Am. Chem. Soc., 2013, 135,
14082; (f) J. Peng, J. H. Docherty, A. P. Dominey and S. P. Thomas,
Chem. Commun., 2017, 53, 4726; (g) J. Takaya, K. Miyama, C. Zhua
and N. Iwasawa, Chem. Commun., 2017, 53, 3982; (h) R. Beniazza, M.
Douarre, D. Lastécouèresa and J.ꢀM. Vincent, Chem. Commun., 2017,
53, 3547; (i) D. Li, T. Mao, J. Huang and Q. Zhu, Chem. Commun.,
2017, 53, 3450; (j) G. Magagnano, A. Gualandi, M. Marchini, L.
Mengozzi, P. Ceroni and P. G. Cozzi, Chem. Commun., 2017, 53, 1591;
(k) Y. Zhang, Z. R. Wong, X. Wu, S. J. L. Lauw, X. Huang, R. D.
Webstera and Y. R. Chi, Chem. Commun., 2017, 53, 184; (l) F. Wang,
X. Qi, Z. Liang, P. Chen and G. Liu, Angew. Chem., Int. Ed., 2014, 53,
1881; (m) H. Li, C. Shan, C.ꢀH. Tung and Z. Xu, Chem. Sci., 2017, 8,
2610; (n) C. Martínez and K. Muñiz , Angew. Chem., Int. Ed., 2012, 50,
7031.
8
(a) A. J. Bloodworth, A. J. Bowyer, J. C. Mitchell, J. Org. Chem. 1986,
51, 1790; (b) A. J. Bloodworth, I. M. Griffin, J. Chem. Soc., Perkin
Trans. 1, 1974, 688.
9
(a) K. R. Kopecky, J. E. Filby, C. Mumford, P. A. Lockwood, J.ꢀY. Ding,
Can. J. Chem. 1975, 53, 1103; (b) K. R. Kopecky, A. J. Miller, Can. J.
Chem. 1984, 62, 1840.
10 (a) A. O. Terent'ev, A. M. Borisov, M. M. Platonov, Z. A. Starikova, V.
V. Chernyshev and G. I. Nikishin, Synthesis, 2009, 24, 4159; (b) Wang,
H.; Chen, C.; Liu, W. And Zhu, Z., Beilstein J. Org. Chem, 2017, 13,
2023.
11 (a) X. Gao, G. Yuan, H. Chen, H. Jiang, Y. Li and C. Qi, Electrochem.
Commun., 2013, 34, 242; (b) X. Gao, X. Pan, J. Gao, H. Jiang, G. Yuan,
and Y. Li, Org. Lett., 2015, 17, 1038.
12 (a) W. Wei, C. Zhang, Y. Xu and X. Wan, Chem. Commun. 2011, 47,
10827; (b) Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu and X. Wan, Angew.
Chem., Int. Ed., 2012, 51, 3231; (c) M. Uyanik, H. Okamoto, T. Yasui
and K. Ishihara, Science, 2010, 328, 1376, (d) M. Uyanik, D. Suzuki, T.
Yasui and K. Ishihara, Angew. Chem., Int. Ed., 2011, 50, 5331.
13 (a) A. Yoshimura, K. R. Middleton, C. Zhu, V. N. Nemykin and V. V.
Zhdankin, Angew. Chem., Int. Ed., 2012, 51, 8059; (b) Y. Yan, Y.
Zhang, C. Feng, Z. Zha and Z. Wang, Angew. Chem., Int. Ed., 2012, 51,
8077; (c) Y. Yan and Z. Wang, Chem. Commun. 2011, 47, 9513; (d) R.
N. Reddi, P. K. Prasad and A. Sudalai, Org. Lett., 2014, 16, 5674.
14 (a) A. Ilangovan and G. Satish, J. Org. Chem., 2014, 79, 4984; (b)K.
Sun, Y. Lv, Y. Chen, T. Zhou, Y. Xing and X. Wang, Org. Biomol.
Chem., 2017, 15, 4464; (c) H. Aruri, U. Singh, S. Kumar, M. Kushwaha,
A. P. Gupta, R. A. Vishwakarma and P. P. Singh, Org. Lett., 2016, 18,
3638 ; (d) H. Aruri, U. Singh, M. Kumar, S. Sharma, S. K. Aithagani, V.
K. Gupta, S. Mignani, R. A. Vishwakarma and P. P. Singh, J. Org.
Chem., 2017, 82, 1000 ; (e) T. K. Achar and P. Mal, J. Org. Chem.,
3
4
(a) H. Gottam and T. K. Vinod, J. Org. Chem., 2011, 76, 974; (b) M.
Jereb, M. Zupana and S. Stavber, Green. Chem., 2005, 7, 100; (c) S. Zhu,
N. Niljianskul and S. L. Buchwald, J. Am. Chem. Soc., 2013, 135, 15746;
(d) M. Beller, J. Seayad, A. Tillack and H. Jiao, Angew. Chem., Int. Ed.,
2004, 43, 3368.
For persistent radical effect, see: (a) A. J. Boyington, M.ꢀL. Y. Riu and N.
T. Jui, J. Am. Chem. Soc., 2017, 139, 6582; (b) N. A. Romero and D. A.
Nicewicz, J. Am. Chem. Soc., 2014, 136, 17024; (c) J. J. Dong, W. R.
Browne and B. L. Feringa, Angew. Chem., Int. Ed., 2015, 54, 734; (d) A.
Studer, Chem.ꢀEur. J. 2001, 7,1159; (e) A. Studer Chem. Soc. Rev. 2004,
33, 267; (f) D. Griller, K. U. Ingold, Acc. Chem. Res. 1976, 9, 13; (g) H.
Fischer, Chem. Rev. 2001, 101, 3581.
5
(a) A. O. Terent'ev, A. T. Zdvizhkov, A. N. Kulakova, R. A. Novikov, A.
V. Arzumanyan and G. I. Nikishin, RSC Adv., 2014, 4, 7579; (b) B. T.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 5