was found to be indispensable to this reaction, and the yield
was lowered (22%) when the reaction was carried out without
TMEDA. Similarly, reaction of the dianion with 2 equiv of
benzylselenocyanate in the presence of TMEDA yielded 1,3-
bis(benzylseleno)-1,3-diphenylpropadiene (26) in 64% yield.
Reaction of the dianion with a mixture of dimethyl diselenide
and benzylselenocyanate afforded unsymmetric allene 36 in
17% yield together with symmetric allenes 1 (26%) and 2
(5%). 3,3-Bis(alkylseleno)-1,3-diphenylpropyne, which has
possibility to form in these reactions, was not detected in
all the cases. Methyl signals of 1 was observed at higher
fields (1H: δ 2.14; 13C: δ 7.1) than those of corresponding
spectral properties.11 The structure of enediynes 4 and 5 was
confirmed by X-ray analysis of E-isomer 4 (Figure 1).12 It
1
sulfur analogue (1H: δ 2.24; 13C: δ 15.6)3 on the H and
13C NMR spectra in CDCl3, and absorption maxima of 1
and 2 were observed at 298 and 307 nm in cyclohexane,
respectively, which are shifted to longer wavelengths com-
pared with those of the corresponding sulfur analogues.
1,3-Bis(methylseleno)allene 1 reacted in refluxing p-xylene
to give (E)- and (Z)-1,3,4,6-tetraphenyl-3-hexene-1,5-diynes
(47 and 58), the framework of which is known as an important
building block of several naturally occurring antitumor
antibiotics9 and as a substrate of the Masamune-Bergman
reaction,10 (Z,Z)-1,2-bis(R-(methylseleno)benzylidene)-3,4-
diphenylcyclobutene (66), and the E,Z-isomer 76 in yields
of 34, 7, 21, and 9%, respectively, after 3 d (Scheme 2).
Figure 1. Crystal structure of 4 showing 50% probability displace-
ment ellipsoids.
was also found that Z-E isomerization occurred between 4
and 5 under the conditions, and ca. 2:1 mixture of 4 and 5
was obtained from 5 in a refluxing p-xylene after 1.5 h.
Scheme 2
(5) (a) Klein, J.; Backer, J. Y. J. Chem. Soc., Chem. Commun. 1973,
576. (b) Leroux, Y.; Mantione, R. Tetrahedron Lett. 1971, 591.
(6) All new compounds gave satisfactory elemental analysis, and IR,
NMR, and mass spectral data correlated with the assigned structures.
(7) 4: Mp 156.2-157.2 °C (pale yellow prisms from benzene/hexane);
1H NMR (500 MHz, CDCl3) δ 7.27-7.31 (m, 10H), 7.39 (t, 2H, J ) 7.30
Hz), 7.46 (t, 4H, J ) 7.30 Hz), 7.98 (d, 4H, J ) 7.30 Hz); 13C NMR (125
MHz, CDCl3) δ 90.9, 98.6, 123.2, 127.8, 128.3 (duplicate), 128.4, 128.6,
129.2, 131.4, 139.0; IR (KBr) νmax 3097, 3025, 1600, 1500, 1450, 1320,
1240, 1180, 1040, 780, 760, 740, 692 cm-1; UV (cyclohexane) λmax 269 (ꢀ
3.16 × 104), 367 (ꢀ 3.30 × 104) nm; MS (m/z) 380 (M+), 302. Anal. Calcd
for C30H20: C, 94.70; H, 5.30. Found: C, 94.82; H, 5.41.
(8) 5: Mp 105.0-106.1 °C (pale yellow needles from benzene/hexane);
1H NMR (500 MHz, CDCl3) δ 7.20-7.23 (m, 6H), 7.30-7.35 (m, 10H),
7.54-7.56 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 91.8, 96.8, 123.4, 127.8,
128.0, 128.4, 128.5, 129.2, 129.7, 131.6, 137.5; IR (KBr) νmax 3050, 3017,
2926, 1597, 1486, 1441, 1415, 1266, 1029, 909, 766, 756, 698 cm-1; UV
(cyclohexane) λmax 269 (ꢀ 2.55 × 104), 361 (ꢀ 2.00 × 104) nm; MS (m/z)
380 (M+), 302, 189. Anal. Calcd for C30H20: C, 94.70; H, 5.30. Found: C,
94.96; H, 5.55.
(9) (a) Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi,
H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J.
Am. Chem. Soc. 1987, 109, 3461. (b) Nicolaou, K. C.; Ogawa, Y.;
Zuccarello, G.; Kataoka, H. J. Am. Chem. Soc. 1988, 110, 7247. (c)
Nicolaou, K. C.; Dai, W.-M.; Wendeborn, S. V.; Smith, A. L.; Torisawa,
Y.; Maligres, P.; Hwang, C.-K. Angew. Chem., Int. Ed. Engl. 1991, 30,
1032. (d) Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991,
30, 1387. (e) Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497.
(f) Nicolaou, K. C.; Liu, A.; Zeng, Z.; McComb, S. J. Am. Chem. Soc.
1992, 114, 9279. (g) Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1993,
32, 1377. (h) Kagan, J.; Wang, X.; Chen, X.; Lau, K. Y.; Batac, I. V.;
Tuveson, R. W.; Hudson, J. B. J. Photochem. Photobiol. B: Biol. 1993,
21, 135. (i) Wender, P. A.; Zercher, C. K.; Beckham, S.; Haubold, E.-M.
J. Org. Chem. 1993, 58, 5867.
Enediynes 4 and 5 have recently synthesized, and assignment
of the E- and Z-isomers was made on the basis of their
(10) (a) Darby, N.; Kim, C. U.; Salau¨n, J. A.; Shelton, K. W.; Takada,
S.; Masamune, S. J. Chem. Soc., Chem. Commun. 1971, 1516. (b) Jones,
R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660. (c) Bergman, R.
G. Acc. Chem. Res. 1973, 6, 25. (d) Wong, H. N. C.; Sondheimer, F.
Tetrahedron Lett. 1980, 21, 217. (e) Lockhart, T. P.; Bergman, R. G. J.
Am. Chem. Soc. 1981, 103, 4091. (f) Ramkumar, D.; Kalpana, M.; Varghese,
B.; Sankararaman, S.; Jagadeesh, M. N.; Chandrasekhar, J. J. Org. Chem.
1996, 61, 2247. (g) Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc. 1998,
120, 1835.
(4) (a) Pourcelot, G.; Cadiot, P. Bull. Soc. Chim. Fr. 1966, 3016; 3024.
(b) Petrov, M. L.; Radchenko, S. I.; Kupin, V. S.; Petrov, A. A. J. Org.
Chem. USSR 1973, 9, 683. (c) Braverman, S.; Duar, Y. Tetrahedron Lett.
1978, 1493. (d) Braverman, S.; Freund, M.; Goldberg, I. Tetrahedron Lett.
1980, 21, 3617. (e) Reich, H. J.; Shah, S. K.; Gold, P. M.; Olson, R. E. J.
Am. Chem. Soc. 1981, 103, 3112. (f) Reich, H. J.; Kelly, M. J. J. Am. Chem.
Soc. 1982, 104, 1119. (g) Tada, M.; Nagasaka, R. Bull. Chem. Soc. Jpn.
1995, 68, 3221.
1924
Org. Lett., Vol. 2, No. 13, 2000