M. MuÈller, J. MuÈller, P. Paetzold, K. Radacki
7.13 (2 mc, C6H4). 13C NMR: d(9 b) = 14.35 (q), 26.96 (t),
31.24 (t); d(9 c) = 26.08 (br), 28.91 (d), 41.10 (br, BC);
2 D-13C/1H HETCOR peaks (J = 145 Hz) prove relations
within the 13C/1H couples d = 26.08/1.02 and d = 28.91/1.80,
[8] W. Rattay, Dissertation, UniversitaÈt MuÈnchen, 1987.
[9] W. Biffar, H. NoÈth, H. Pommerening, Angew. Chem.
1980, 92, 63; Angew. Chem. Int. Ed. Engl. 1980, 19, 56.
[10] J. SandstroÈm, Dynamic NMR Spectroscopy, Second
Printing, Acad. Press, London, 1984.
and
a
relation d = 41.10/1.46 is established by 2 D-
13C/1H HMQC, thus confirming all the assignments given for
iBu; d(9 d) = 37.40 (t), 124.37, 128.23, 128.55 (3 d), 144.67 (s);
d(9 e) = 11.93 (q), 29.38 (t), 35.53 (br, BC), 42.32 (d);
d(9 f) = 26.68, 27.19 (2 t), 36.85 (br, C2/6 of Cy), 38.93 (d),
39,34 (br, BC); d(9 g) = 31.55 (q, s; accidental degenerassy of
both of the tBu signals), 36.78 (br, BC), 125.10, 128.19 (2 d),
141.51, 146.72 (2 s). MS(9 c): 275.31270 (obs.), 275.31269
(calc. for M+). MS(9 d): 252.22665 (obs.), 252.22661 (calc. for
M±C4H9).
[11] C. Brown, R. H. Cragg, T. J. Miller, D. O. Smith, J. Or-
ganomet. Chem. 1983, 244, 209.
[12] A. J. Ashe III, W. Klein, R. Rousseau, J. Organomet.
Chem. 1994, 468, 21.
[13] Gaussian 98, Revision A.6, M. J. Frisch, G. W. Trucks,
H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Chee-
seman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci,
C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Ma-
lick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Lia-
shenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W.
Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres,
C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A.
Pople, Gaussian, Inc., Pittsburgh PA, 1998.
[14] R. Ditchfield, Mol. Physics 1974, 27, 789.
[15] A. Neu, T. Mennekes, U. Englert, M. Hofmann, P. von
Rague Schleyer, Inorg. Chim. Acta 1999, 289, 58.
[16] A. Neu, K. Radacki, P. Paetzold, Angew. Chem. 1999,
111, 1358; Angew. Chem. Int. Ed. 1999, 38, 1281.
[17] H. NoÈth, B. Wrackmeyer in P. Diehl et al. (Eds.) NMR,
Basic Principles and Progress, Vol. 14, Springer, Berlin
1978.
Ab initio calculations
The GAUSSIAN 98 package [13], run on a cluster of work-
stations (Rechenzentrum der RWTH Aachen), was applied
for all calculations. The total energies Eh and ZPVE (in par-
entheses), all calculated on the B3LYP/6±31++G(d,p) level,
are as follows (in Hartrees): NB3H6: exo-2 ±132.953560
(0.071968), exo-3 ±132.954643 (0.073227), P2 (Fig. 1)
±132.951477 (0.071646), P1 (Fig. 1) ±132.943151 (0.072384);
NB3Me3H3: exo-2 ±250.933736 (0.155864), exo-3 ±250.935373
(0.157371); NB3H5Cl: exo-2 ±592.590250 (0.065081), exo-3
±592.592394 (0.066407), endo-4 ±592.578909 (0.065553), endo-3
±592.584792 (0.066734); NB3Me3H2Cl: exo-2 ±710.573843
(0.149039),
exo-3
±710.575969
(0.150579),
endo-3
±710.567150 (0.151032); NB3H4: A ±131.731454 (0.049558),
B
D
F
±131.727217 (0.050556),
±131.700598 (0.051704),
±131.623541 (0.051472); NB3Me4:
C
E
±131.708100 (0.053350),
±131.708037 (0.052683),
A
C
E
±289.076671
±289.027189
±289.012076
(0.162974),
(0.165577),
(0.166198),
B
D
±289.074689 (0.163562),
±289.019674 (0.165028),
[18] B. Wrackmeyer in G. A. Webb (Ed.) Annual Reports on
NMR Spectroscopy, Vol. 20, Academic Press, London
1988.
F
±288.942284 (0.164986). Calculated energies
are mentioned in the preceding sections without ZPVE.
[19] D. F. Gaines, G. M. Edvenson, T. G. Hill, B. R. Adams,
Inorg. Chem. 1987, 26, 1813.
We gratefully acknowledge the support of this work by
Deutsche Forschungsgemeinschaft and Fonds der Che-
mischen Industrie. We are also grateful to the Rechenzen-
trum of our university for generously placing computation
time at our disposal.
[20] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Metho-
den in der organischen Chemie, 4th ed., Thieme, Stutt-
gart 1991.
[21] R. R. Mohr, W. N. Lipscomb, Inorg. Chem. 1986, 25,
1053.
[22] P. H. M. Budzelaar, K. Krogh-Jespersen, T. Clark, P. von
R. Schleyer, J. Am. Chem. Soc. 1985, 107, 2773.
[23] H. Klusik, A. Berndt, Angew. Chem. 1983, 95, 895; An-
gew. Chem. Int. Ed. Engl. 1983, 22, 877.
[24] C. Wieczorek, J. Allwohn, G. Schmidt-Lukasch, R. Hu-
nold, W. Massa, A. Berndt, Angew. Chem. 1990, 102,
435; Angew. Chem. Int. Ed. Engl. 1990, 29, 398.
[25] H. C. Brown, U. S. Racherla, J. Org. Chem. 1986, 51,
427.
[26] H. C. Brown, D. Busavaih, N. G. Bhat, Organometallics
1983, 2, 1309.
[27] B. G. Ramsay, N. K. Das, J. Am. Chem. Soc. 1972, 94,
4227.
References
[1] M. MuÈller, P. Paetzold, Coord. Chem. Rev. 1998, 176,
135.
[2] P. Paetzold, B. Redenz-Stormanns, R. Boese, M. BuÈhl,
P. von Rague Schleyer, Angew. Chem. 1990, 102, 1059;
Angew. Chem. Int. Ed. Engl. 1990, 29, 1059.
[3] M. MuÈller, T. Wagner, U. Englert, P. Paetzold, Chem.
Ber. 1995, 128, 1.
[4] M. MuÈller, U. Englert, P. Paetzold, Chem. Ber. 1995,
128, 1105.
[5] S. Luckert, U. Englert, P. Paetzold, Inorg. Chim. Acta
1998, 269, 43.
[6] R. Boese, B. KroÈckert, P. Paetzold, Chem. Ber. 1987,
120, 1913.
[7] P. Paetzold, B. Redenz-Stormanns, R. Boese, Chem. Ber.
1991, 124, 2435.
[28] H. C. Brown, N. Ravindran, Inorg. Chem. 1977, 16,
2938.
[29] H. C. Brown, J. A. Sikorski, Organometallics 1982, 1,
28.
1360
Z. Anorg. Allg. Chem. 2000, 626, 1349±1360