J. Am. Chem. Soc. 2000, 122, 5473-5476
5473
Total Synthesis of (+)-Prelaureatin and (+)-Laurallene
Michael T. Crimmins* and Elie A. Tabet
Contribution from the Venable and Kenan Laboratories of Chemistry, The UniVersity of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290
ReceiVed February 28, 2000
Abstract: The first total syntheses of (+)-prelaureatin and (+)-laurallene are described. An asymmetric glycolate
aldol addition was followed by a ring-closing metathesis to close the eight-membered ring allowing construction
of the oxocene core of (+)-prelaureatin and (+)-laurallene in seven synthetic steps from (R)-benzylglycidyl
ether.
The Laurencia red algae, particularly Laurencia nipponica,
and its predators contribute a stunning diversity of medium ring
ether metabolites to the C15 acetogenins.1 Many of these C15
nonterpenoids are halogenated and further decorated with a
variety of substituents including enyne side chains or bromoal-
lenes. Two basic structural types of halogenated eight medium
ring ethers have been isolated from Laurencia sp. (Figure 1).
The lauthisan structural type contains a cis R,R′-disubstituted
oxocene and the R configuration at carbons 6 and 7 while the
laurenan subclass possesses the S configuration at C6 and C7
enforcing a trans R,R′-disubstitution pattern at the ether oxygen.
Biosynthetic studies on the Laurencia cyclic ether metabolites
have demonstrated that lactoperoxidase (LPO) directly trans-
forms 3E,6R,7R-laurediol into deacetyllaurencin2 and 3Z,6S,7S-
laurediol into prelaureatin 1 through a bromo cationic cyclization
(Figure 2).3 Deacetyllaurencin is further transformed to laure-
fucin4 and laurexanyne5 by a second bromo cation cyclization
Figure 1. Medium ring ether natural products.
or to laurencin6 by acetylation. Prelaureatin 17 has been shown
to be the biogenetic precursor8 of several members of the
for the construction of medium ring ethers has resulted from
the synthetic efforts toward laurencin.16 The laurenan structural
subclass has received substantially less attention,17 presumably
because of the added challenge of constructing the oxocene with
the appropriate S configuration at carbons 6 and 7 dictating a
trans R,R′-disubstitution pattern at the ether oxygen.1
Recent reports from our laboratories described an asymmetric
aldol-ring closing metathesis strategy12 for the construction of
the oxocene core of laurencin and a second-generation synthesis
of laurencin based on an asymmetric alkylation-ring-closing
laurenan structural subclass such as laureatin 2, isolaureatin 3,9
and laurallene 4 (Figure 3).10 Laureatin 2 and isolaureatin 3
display significant larvacidal activity (IC50 ) 0.06 and 0.50 ppm,
respectively) in mosquitos.11
The lauthisan class has been the subject of substantial
synthetic effort culminating in several syntheses of the repre-
sentative member laurencin.12-15 A wealth of new strategies
(1) Faulkner, D. J. Nat. Prod. Rep. 1999, 16, 155-198. Faulkner, D. J.
Nat. Prod. Rep. 1998, 15, 113-158. Faulkner, D. J. Nat. Prod. Rep. 1997,
14, 259-302. Faulkner, D. J. Nat. Prod. Rep. 1996, 13, 75-125 and earlier
reviews in the same series.
(11) Watanabe, K.; Umeda, K.; Miyakado, M. Agric. Biol. Chem. 1989,
53, 2513-2515.
(2) Fukuzawa, A.; Aye M.; Murai, A. Chem. Lett. 1990, 1579-1580.
Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193-4205.
(3) Fukuzawa, A.; Aye, M.; Nakamura, M.; Tamura, M.; Murai, A. Chem.
Lett. 1990, 1287-1290. Kurosawa, E.; Fukuzawa, A.; Irie, T. Tetrahedron
Lett. 1972, 2121-2124.
(12) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653-
5660.
(13) Crimmins, M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029-2032.
(14) Masamune, T.; Matsue, H.; Murase, H. Bull. Chem. Soc. Jpn. 1979,
52, 127-134. Masamune, T.; Murase, H.; Matsue, H.; Murai, A. Bull. Chem.
Soc. Jpn. 1979, 52, 135-141. Bratz, M.; Bullock, W. H.; Overman, L. E.;
Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958-5966. Mujica, M. T.;
Afonso, M. M.; Galindo, A.; Palenzuela, J. A. Synlett 1996, 983-984.
Kru¨ger, J.; Hoffman, R. W. J. Am. Chem. Soc. 1997, 119, 7499-7504.
Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J. A. J. Org. Chem.
1998, 63, 9728-9738.
(4) Furusaki, A.; Kurosawa, E.; Fukuzawa, A.; Irie, T. Tetrahedron Lett.
1973, 4579-4582.
(5) Fukuzawa, A.; Aye, M.; Nakamura, M.; Tamura, M.; Murai, A.
Tetrahedron Lett. 1990, 31, 4895-4898.
(6) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 1091-
1099.
(7) Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett. 1991, 32,
5597-5598.
(8) Ishihara, J.; Shimada, Y.; Kanoh, N.; Takasugi, Y.; Fukuzawa, A.;
Murai, A. Tetrahedron 1997, 53, 8371-8382.
(9) Irie, T.; Izawa, M.; Kurosawa, E. Tetrahedron Lett. 1968, 2091-
2096. Irie, T.; Izawa, M.; Kurosawa, E. Tetrahedron Lett. 1968, 2735-
2738. Irie, T.; Izawa, M.; Kurosawa, E. Tetrahedron 1970, 26, 851-870.
(10) Fukuzawa, A.; Kurosawa, E. Tetrahedron Lett. 1979, 2797-2800.
(15) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.;
Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483-7498. Tsushima, K.;
Murai, A. Tetrahedron Lett. 1992, 33, 4345-4348.
(16) Alvarez, E.; Candenas, M.-L.; Pe´rez, R.; Ravelo, J. L.; Martin, J.
D. Chem. ReV. 1995, 95, 1953-1980.
(17) Edwards, S. D.; Lewis, T.; Taylor, R. J. K. Tetrahedron Lett. 1999,
40, 4267-4270.
10.1021/ja0007197 CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/26/2000