3934
K. Bahrami et al. / Tetrahedron Letters 49 (2008) 3931–3934
Table 4
Acknowledgement
Comparison of the sulfonylation of methoxybenzene using [BTBA]Cl–
FeCl3 with methods reported in the literature
The authors are thankful to the Razi University
Research Council for financial support for this research.
Conditions
Yield (%)
[o:m:p]
[BTBA]Cl–FeCl3/4-MePhSO2Cl/60 °C/1 min
[BTBA]Cl–FeCl3/PhSO2Cl/60 °C/1 min
Crosslinked polystyrene supported AlCl3 (Ps-AlCl3)/4-
MePhSO2Cl/85 °C/1.1 h28
95 [3:0:97]
93 [3:0:97]
92 [9:3:88]
References and notes
1. (a) Tanaka, K.; Kaji, A. Synthetic Uses of Sulfones. In Synthetic Uses
of Sulfones in The Chemistry of Sulphones and Sulphoxides; Patai, S.,
Rappoport, Z., Stirling, C. J. M., Eds.; Wiley Interscience: New York,
1988; p 759; (b) Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61, 107; (c)
Field, L. Synthesis 1978, 713.
BiCI3–TfOH/PhSO2Cl/120 °C/0.5 h29
Indium metal/4-MePhSO2Cl/dioxane/100 °C30
Fe-pillared bentonite (Fe-PILC)/4-MePhSO2Cl/120 °C/
20 min27
82 [47:0:53]
76
84
[35.2:0:64.8]
84 [43:0:57]
[bmim]ClÁFeCl3/4-MePhSO2Cl/50 °C/5 h31
2. Michaely, W. J.; Kraatz, G. W. U.S. Patent 4,780,127, 1988 (CAN:
1989, 111, P 129017a).
3. Padwa, A.; Bullock, W. H.; Dyszlewski, A. D. J. Org. Chem. 1990, 55,
955.
4. Block, E. Angew. Chem., Int. Ed. Engl. 1992, 31, 1135.
5. Mackinnon, S. M.; Wang, J. Y. Macromolecules 1998, 31, 7970.
6. Jensen, R.; Goldman, G. In Friedel–Crafts and Related Reactions;
Olah, G., Ed.; Wiley Interscience: New York, 1964; Vol. III, p 1319.
7. Simpkins, N. S. Sulfones in Organic Synthesis; Pergamon Press:
Oxford, 1993.
8. Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem. Soc. 1973,
95, 564.
9. Repichet, S.; Roux, C. L.; Dubac, J. Tetrahedron Lett. 1999, 40, 9233.
10. Choudhary, B. M.; Chowdari, N. S.; Kantam, M. L. J. Chem. Soc.,
Perkin Trans. 1 2000, 2689.
11. Singh, R. P.; Kamble, R. M.; Chanda, K. L.; Saravanan, P.; Singh, V.
K. Tetrahedron Lett. 2001, 57, 241.
12. Frost, C. G.; Hartley, J. P.; Whittle, A. J. Synlett 2001, 830.
13. Olah, G. A.; Mathew, T.; Prakash, G. K. Chem. Commun. 2001, 17,
1696.
14. Laidlaw, P.; Bethell, D.; Brown, S. M.; Watson, G.; Willock, D. J.;
Hutchings, G. J. J. Mol. Catal. A: Chem. 2002, 178, 205.
15. Garzya, V.; Forbes, I. T.; Lauru, S.; Maragni, P. Tetrahedron Lett.
2004, 45, 1499.
excellent yields of the products (entries 10 and 11). Also,
deactivated arenes such as chlorobenzene and bromoben-
zene underwent sulfonylation in excellent yields (entries
16 and 17). Further, an improvement in the regioselectivity
was observed in the sulfonylation of naphthalene with ben-
zenesulfonyl chloride and 4-methylbenzenesulfonyl chlo-
ride (entries 19 and 20). 4-Nitrobenzenesulfonyl chloride
failed to give the sulfonylated product (entry 21). As shown
in Table 3, a significant enhancement of para selectivity was
observed in each case.
To access the feasibility of applying this method in a
preparative scale, we carried out the sulfonylation of mesit-
ylene with benzenesulfonyl chloride in 40 mmol scale. As
expected, the reaction proceeded smoothly, similar to the
case in a smaller scale (Table 3, entry 2), and the desired
aryl sulfone was obtained in 96% isolated yield.
In order to show the efficiency of this method, the results
of the sulfonylation of methoxybenzene with sulfonylating
agents using our method are compared with those reported
by other methods. The results show that this method is
superior to some previously reported methods in terms of
yields, reaction times and the amount of the reagent used
for successful sulfonylation (Table 4).
In conclusion, the best results are realized and the utility
of the FeCl3-based ionic liquid both as solvent and catalyst
is satisfactorily justified. The advantages of this methodol-
ogy using a FeCl3-based ionic liquid are mild reaction
conditions, excellent yields, short reaction times, simple
work-up procedure, low cost and easy preparation and
handling of the catalyst.
16. (a) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-
VCH: Weinheim, 2003; (b) Welton, T. Coord. Chem. Rev. 2004, 248,
2459; (c) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39,
3772; (d) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S.
Tetrahedron 2005, 61, 1015.
17. Adams, C. J.; Earle, M. J.; Seddon, K. R. Chem. Commun. 1999,
1043.
18. Chauvin, Y.; Mussmann, L.; Olivier, H. Angew. Chem., Int. Ed. Engl.
1995, 34, 2698.
19. Howarth, J. Tetrahedron Lett. 2000, 41, 6627.
20. Owens, G. S.; Abu-Omar, M. M. Chem. Commun. 2000, 1165.
21. Brasse, C. C.; Englert, U.; Salzer, A.; Waffenschmidt, H.; Wassersc-
heid, P. Organometallics 2000, 19, 3818.
22. Alizadeh, A. A.; Khodaei, M. M.; Nazari, E. Tetrahedron Lett. 2007,
48, 6805.
23. The [BTBA]Cl–FeCl3 ionic liquid was prepared by grinding of benzyl
tributyl ammonium chloride (311.94 mg, 1 mmol) with FeCl3 (162.2
mg, 1 mmol) for 2 min; mp = 57–59 °C.
24. Graybill, B. M. J. Org. Chem. 1967, 32, 2931.
25. Jin, T.; Yang, M.; Feng, G.; Li, T. J. Chem. Res. (S) 2003, 721.
26. Singh, R. P.; Kamble, R. M.; Chandra, K. L.; Saravanan, P.; Singh,
V. K. Tetrahedron 2001, 57, 241.
2. General procedure for sulfonylation
To [BTBA]Cl–FeCl3 (N = 0.5, 1 mmol), p-toluenesulf-
onyl chloride or benzenesulfonyl chloride (1 mmol) and
aromatic compound (1 mmol) were added. The reaction
mixture was stirred magnetically, at 60 °C. After complete
conversion, as indicated by TLC, the reaction mixture was
quenched by adding water (10 mL), extracted with diethyl
ether (4 Â 10 mL) and the extract dried with anhydrous
MgSO4. The filtrate was evaporated and the corresponding
sulfone was obtained in excellent yield (Table 3).
27. Singh, D. U.; Singh, P. R.; Samant, S. D. Tetrahedron Lett. 2004, 45,
9079.
28. Borujeni, K. P.; Tamami, B. Catal. Commun. 2007, 8, 1191.
´
29. Repichet, S.; Roux, C. L.; Dubac, J. Tetrahedron Lett. 1999, 40, 9233.
30. Jang, D. O.; Moon, K. S.; Cho, D. H.; Kim, J.-G. Tetrahedron Lett.
2006, 47, 6063.
31. Alexander, M. V.; Khandekar, A. C.; Samant, S. D. J. Mol. Catal. A:
Chem. 2004, 223, 75.