Scheme 4 D-Lyxonate 8 to 2,3-O-isopropylidene-D-lyxonolactone 9.
inversion of the reacting carbon center. Reduction of the carbonyl
group on the anomeric carbon of the 2,3-acetonide 10 by NaBH4 in
methanol solution gave product 11 as a colorless syrup (95% yield).
Finally, 11 was subjected to hydrolysis using acidic Amberlite IR-
120H resin to afford L-ribose 12 in 94% yield. The overall yield of
L-ribose was 47% which can be compared with previously reported
yields of 18 to 45%.3,9
7 S. H. Buiyan, Z. Ahmed, M. Utamura and K. Izumori, J. Ferment.
Bioeng., 1998, 86, 513.
8 T. B. Granstro¨m, G. Takata, K. Morimoto, M. Leisola and K. Izumori,
Enzyme Microb. Technol., 2005, 36, 976.
9 T. Ma, S. B. Pai, Y. L. Zhu, J. S. Lin, K. Shanmuganathan, J. Du, C.
Wang, H. Kim, M. G. Newton, Y. C. Cheng and C. K. Chu, J. Med.
Chem., 1996, 39, 2835; L. Petru˘s, M. Petrusˇova and Z. Hricov´ıniova´,
Top. Curr. Chem., 2001, 215, 15; Y. Abe, T. Takizawa and T. Kunieda,
Chem. Pharm. Bull., 1980, 28, 1324; S. Pitsch, Helv. Chim. Acta, 1997,
80, 2286; M. E. Jung and Y. Xu, Tetrahedron Lett., 1997, 38, 4199; H.
Takahashi, Y. Iwai, Y. Hitomi and S. Ikegami, Org. Lett., 2002, 4, 2401;
M. J. Seo, J. An, J. H. Shim and G. Kim, Tetrahedron Lett., 2003, 44,
3051; N. Wymer and E. J. Toone, Curr. Opin. Chem. Biol., 2000, 4, 110;
T. Shimonishi and K. Izumori, J. Ferment. Bioeng., 1996, 81, 493; R.
D. Woodyer, N. J. Wymer, F. M. Racine, S. N. Khan and B. C. Saha,
Appl. Environ. Microbiol., 2008, 74, 2967.
10 J. A. Cusumano, J. Chem. Educ., 1995, 72, 959; R. R. Bader, P.
Baumeister and H.-U. Blaser, Chimia, 1996, 50, 99; R. A. Sheldon,
J. Mol. Catal. A: Chem., 1996, 107, 75.
11 D. W. John, P. K. Vivekanand, E. M. Philip and B. T. Leroy, Org.
Synth., 2005, 82, 75.
Conclusions
The efficient synthesis of the rare sugars L-lyxose and L-ribose was
carried out in a 5-step preparative route starting from naturally
occurring D-ribose and D-lyxose respectively. The aerobic oxida-
tion of D-sugar to lactone was carried out over a heterogeneous
catalyst, 10 wt% Pd-Bi supported on carbon, with high yields of
>95%. The best catalyst contained a Pd : Bi atomic loading of
5 : 1. Under alkaline conditions, the catalyst was not affected by
any poisoning and could be reused for subsequent batch reactions,
with no significant loss of activity and selectivity. The synthetic
route resulted in good yields of L-lyxose and L-ribose of 50% and
47%, respectively.
12 S.-Y. Chen and M. M. Joullie, Tetrahedron Lett., 1983, 46, 5027; A.
Fu¨rstner, K. Radkowski, C. Wirtz, R. Goddard, C. W. Lehmann
and R. Mynott, J. Am. Chem. Soc., 2002, 124, 7061; S. Jiang, B.
Mekki, G. Singh and R. H. Wightman, Tetrahedron Lett., 1994, 35,
5505.
13 L. A. Flexser, Hoffmann-La Roche Inc., US Pat., 2 438 883, 1948, L.
H. Sternbach, Hoffmann-La Roche Inc., US Pat., 2 438 882, 1948, W.
Schmidt and J. Paust, BASF Aktiengesellschaft, US Pat. , 4 294 766,
1981.
14 A. Abbadi, M. Makkee, W. Visscher, J. A. R. van Veen and H. van
Bekkum, J. Carbohydr. Chem., 1993, 12, 573; M. Besson, P. Gallezot, F.
Lahmer, G. Fleche and P. Fuertes, in: Catalysis of Organic Reactions,
ed. J. R. Kosak and T. A. Johnson, M. Dekker Inc., New York, 1994,
169; H. E. van Dam, P. Duijverman, A. P. G. Kieboom and H. van
Bekkum, Appl. Catal., 1987, 33, 373.
Acknowledgements
Financial support from the National University of Singapore
under grant numbers R-143-000-374-112 and R-143-000-418-112
is gratefully acknowledged.
Notes and references
1 F. W. Lichtenthaler and S. Peters, C. R. Chim., 2004, 7, 65.
2 J. Du, Y. Choi, K. Lee, B. K. Chun, J. H. Hong and C. K. Chu,
Nucleosides, Nucleotides Nucleic Acids, 1999, 18, 187; J. S. Cooperwood,
V. Boyd, G. Gumina and C. K. Chu, Nucleosides, Nucleotides Nucleic
Acids, 2000, 19, 219; G. Gumina, Y. Chong, H. Choo, G.-Y. Song and
C. K. Chu, Curr. Top. Med. Chem., 2002, 2, 1065; C. Mathe´ and G.
Gosselin, Antiviral Res., 2006, 71, 276; G. Gumina, Y. Chong and C.
K. Chu, in Cancer Drug Discovery and Development: Deoxynucleoside
Analogs in Cancer Therapy, ed. G. J. Peters, Humana Press, New Jersey,
2007, p. 173; M. Yun, H. R. Moon, H. O. Kim, W. J. Choi, Y.-C. Kim,
C.-S. Park and L. S. Jeong, Tetrahedron Lett., 2005, 46, 5903.
3 K. Okano, Tetrahedron, 2009, 65, 1937.
4 E. J. Reist, L. V. Fisher and D. E. Gueffroy, J. Org. Chem., 1966, 31,
226.
5 H. Kuzuhara, H. Terayama, H. Ohrui and S. Emoto, Carbohydr. Res.,
1971, 20, 165.
6 J. S. Brimacombe, A. M. Mofti and M. Stacey, Carbohydr. Res., 1971,
16, 303.
15 Y. Schuurman, B. F. M. Kuster, K. van der Wiele and G. B. Marin,
Appl. Catal., A, 1992, 89, 47; H. E. van Dam, A. P. G. Kieboom and
H. van Bekkum, Appl. Catal., 1987, 33, 361.
16 A. Abbadi and H. van Bekkum, Appl. Catal., A, 1995, 124, 409.
17 H. E. van Dam, L. J. Wisse and H. van Bekkum, Appl. Catal., 1990,
61, 187; M. Wenkin, C. Renard, P. Ruiz, B. Delmon and M. Devillers,
Stud. Surf. Sci. Catal., 1997, 108, 391.
18 P. Gallezot, Catal. Today, 1997, 37, 405; M. Besson, F. Lahmer, P.
Gallezot, P. Fuertes and G. Fle`che, J. Catal., 1995, 152, 116; T. Mallat
and A. Baiker, Catal. Today, 1994, 19, 247; M. Besson and P. Gallezot,
Catal. Today, 2000, 57, 127.
19 M. Godskesen, I. Lundt, R. Madsen and B. Winchester, Bioorg. Med.
Chem., 1996, 4, 1857; H. Batra, R. M. Moriarty, R. Penmasta, V.
Sharma, G. Stanciuc, J. P. Staszewski, S. M. Tuladhar, D. A. Walsh,
S. Datla and S. Krishnaswamy, Org. Process Res. Dev., 2006, 10,
484.
20 M. Godskesen, I. Lundt and I. Søtofte, Tetrahedron: Asymmetry, 2000,
11, 567.
7726 | Org. Biomol. Chem., 2011, 9, 7720–7726
This journal is
The Royal Society of Chemistry 2011
©