870
J. Am. Chem. Soc. 2001, 123, 870-874
Stereochemical Elucidation and Total Synthesis of
Dihydropacidamycin D, a Semisynthetic Pacidamycin
Constantine G. Boojamra,* Re´my C. Lemoine, Julie C. Lee, Roger Le´ger,† Karin A. Stein,‡
Nicole G. Vernier, Angela Magon, Olga Lomovskaya, Patrick K. Martin,
Suzanne Chamberland,§ May D. Lee, Scott J. Hecker, and Ving J. Lee
Contribution from Microcide Pharmaceuticals, Inc., 850 Maude AVenue,
Mountain View, California 94043
ReceiVed September 6, 2000
Abstract: Hydrogenation of the C(4′) exocyclic olefin of the pacidamycins has been shown to produce a
series of semisynthetic compounds, the dihydropacidamycins, with antimicrobial activity similar to that of the
natural products. Elucidation of stereochemistry in the pacidamycins has been completed through a campaign
of natural product degradation experiments in combination with the total synthesis of the lowest-molecular
weight dihydropacidamycin, dihydropacidamycin D. The stereochemical identities of the tryptophan and two
alanine residues contained in pacidamycin D have been shown to be of the natural (S) configuration, and the
unique 3-methylamino-2-aminobutyric acid contained in this series of antibiotics has been shown to be of the
(2S,3S) configuration. Finally, the stereochemistry obtained by hydrogenation of the C(4′)-C(5′) exocyclic
olefin has been shown to be (R) at the C(4′) nucleoside site.
Introduction
samycins18 (also known as uridyl-peptide antibiotics, or UPAs,
see Table 1), presented themselves as attractive starting points
for the development of a new class of antibacterial drugs for
three reasons. First, both the pacidamycins and mureidomycins
have demonstrated promising bioavailability and mureidomycin
C has shown in vivo efficacy.11,15 Second, these antibiotics have
an unexploited mode of action; the mureidomycins have been
shown to inhibit translocase (transferase or MraY),19-21 an
essential enzyme in peptidoglycan biosynthesis22,23 in most
Gram-positive and Gram-negative organisms and mycobacteria.
Translocase is not the target of any agents in current clinical
use. Consequently, strains of Pseudomonas aeruginosa that are
resistant to â-lactam and fluoroquinolone antibiotics remain
sensitive to mureidomycin.24 Third, unlike other translocase
inhibitors such as tunicamycin,21 which also inhibits the
formation of the pentasaccharide core found in mammalian
N-linked glycoproteins, the pacidamycins and mureidomycins
are specific for their bacterial targets. Consistent with this,
mureidomycins A and C have been shown to have low
cytotoxicity.25
The increasing occurrence of multiresistant bacterial infections
in both nosocomial and community settings has prompted the
need for new antibiotic therapies.1-7 Strategies to this end have
included modification of existing classes of antibiotics, use of
agents to potentiate existing antibiotics against resistant organ-
isms, and the identification of new classes of antibiotics that
have unexploited modes of action and thus are not cross-resistant
with old classes.8,9 Three structurally related families of natural
products, the pacidamycins,10-12 mureidomycins,13-17 and nap-
* To whom correspondence should be addressed.
† Current address: ConjuChem Inc., 225 President-Kennedy Ave., Suite
3950, Montre´al, Que´bec, Canada H2X 3Y8.
‡ Current address: Roche Bioscience, 2401 Hillview Ave., Palo Alto,
CA 94304.
§ Current address: Universite´ de Sherbrooke, 2500 Boul. Universite´,
Sherbrooke, Que´bec, Canada J1K 2R1.
(1) Brown, P. D.; Lerner, S. A. Lancet 1998, 352, 1295-1302.
(2) Spach, D. H.; Black, D. Ann. Allergy, Asthma, Immunol. 1998, 81,
293-303.
(3) Bugg, T. D.; Walsh, C. T. Nat. Prod. Rep. 1992, 9, 199-215.
(4) Gold, H. S.; Moellering, R. C., Jr. N. Engl. J. Med. 1996, 335, 1445-
1453.
(5) Cohen, M. L. Ann. Emerg. Med. 1994, 24, 454-456.
(6) Jacoby, G. A. Annu. ReV. Med. 1996, 47, 169-179.
(7) Nikaido, H. Science 1994, 264, 382-388.
(8) Renau, T. E.; Hecker, S. J.; Lee, V. J. Antimicrobial Potentiation
Approaches: Targets and Inhibitors. In Annual Reports in Medicinal
Chemistry; Academic Press: New York, 1998; Vol. 33, Chapter 12.
(9) Chu, D. T.; Plattner, J. J.; Katz, L. J. Med. Chem. 1996, 39, 3853-
74.
(10) Chen, R. H.; Buko, A. M.; Whittern, D. N.; McAlpine, J. B. J.
Antibiot. (Tokyo) 1989, 42, 512-20.
(11) Fernandes, P. B.; Swanson, R. N.; Hardy, D. J.; Hanson, C. W.;
Coen, L.; Rasmussen, R. R.; Chen, R. H. J. Antibiot. (Tokyo) 1989, 42,
521-6.
(12) Karwowski, J. P.; Jackson, M.; Theriault, R. J.; Chen, R. H.; Barlow,
G. J.; Maus, M. L. J. Antibiot. (Tokyo) 1989, 42, 506-11.
(13) Isono, F.; Sakaida, Y.; Takahashi, S.; Kinoshita, T.; Nakamura, T.;
Inukai, M. J. Antibiot. (Tokyo) 1993, 46, 1203-7.
(14) Isono, F.; Inukai, M.; Takahashi, S.; Haneishi, T.; Kinoshita, T.;
Kuwano, H. J. Antibiot. (Tokyo) 1989, 42, 667-73.
(15) Isono, F.; Katayama, T.; Inukai, M.; Haneishi, T. J. Antibiot. (Tokyo)
1989, 42, 674-9.
(16) Isono, K. J. Antibiot. (Tokyo) 1988, 41, 1711-39.
(17) Inukai, M.; Isono, F.; Takahashi, S.; Enokita, R.; Sakaida, Y.;
Haneishi, T. J. Antibiot. (Tokyo) 1989, 42, 662-6.
(18) Chatterjee, S.; Nadkarni, S. R.; Vijayakumar, E. K.; Patel, M. V.;
Ganguli, B. N.; Fehlhaber, H. W.; Vertesy, L. J. Antibiot. (Tokyo) 1994,
47, 595-8.
(19) Isono, F.; Inukai, M. Antimicrob. Agents Chemother. 1991, 35, 234-
6.
(20) Brandish, P. E.; Burnham, M. K.; Lonsdale, J. T.; Southgate, R.;
Inukai, M.; Bugg, T. D. J. Biol. Chem. 1996, 271, 7609-14.
(21) Brandish, P. E.; Kimura, K. I.; Inukai, M.; Southgate, R.; Lonsdale,
J. T.; Bugg, T. D. Antimicrob. Agents Chemother. 1996, 40, 1640-4.
(22) Pless, D. D.; Neuhaus, F. C. J. Biol. Chem. 1973, 248, 1568-76.
(23) Struve, W. G.; Sinha, R. K.; Neuhaus, F. C. Biochemistry 1966, 5,
82-93.
(24) Isono, F.; Kodama, K.; Inukai, M. Antimicrob. Agents Chemother.
1992, 36, 1024-7.
10.1021/ja003292c CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/11/2001