[1+2+1+2]-cycloaddition pathway. After optimisation, the
dihydropyridine ring can be formed with high conversion
within a week.
We thank Merck & Co. (formerly Schering-Plough, Newhouse,
UK) for funding and the EPSRC National Mass Spectrometry
Service at Swansea.
References
1 For reviews: (a) A. Domling and I. Ugi, Angew. Chem., Int. Ed.,
¨
2000, 39, 3168–3210; (b) T. J. Williams and L. Zhang, Pure Appl.
Chem., 2002, 74, 25–31; (c) H. Bienayme, C. Hulme, G. Oddon and
P. Schmitt, Chem.–Eur. J., 2000, 6, 3321–3329; (d) L. F. Tietze and
A. Modi, Med. Res. Rev., 2000, 20, 304–322.
2 (a) A. Strecker, Justus Liebigs Ann. Chem., 1850, 75, 27–45;
(b) A. Laurent and C. F. Gerhardt, Justus Liebigs Ann. Chem.,
1838, 28, 265.
3 (a) C. O. Kappe, Acc. Chem. Res., 2000, 33, 879–888;
(b) C. Mannich and W. Krosche, Arch. Pharm., 1912, 250,
647–667; (c) P. Biginelli, Ber. Dtsch. Chem. Ges., 1891, 24,
1317–1319; (d) R. Robinson, J. Chem. Soc. Trans., 1917, 111,
876–899; (e) G. C. B. Harriman, Tetrahedron Lett., 1997, 38,
5591–5594.
4 (a) I. Ugi, R. Meyr, U. Fetzer and C. Steinbruckner, Angew.
¨
Chem., 1959, 71, 373–388; (b) A. Hantzsch, Chemische Berichte,
1881, 14, 1637–1638; (c) M. Passerini and L. Simone, Gazz. Chim.
Ital., 1921, 51, 126–129; (d) I. Ugi, Angew. Chem., Int. Ed. Engl.,
¨
1962, 1, 8–6; (e) I. Ugi, B. Werner and A. Domling, Molecules,
Scheme 1 Proposed mechanism for the formal [1+2+1+2]-
2003, 8, 53–66; (f) C. Hulme and V. Gore, Curr. Med. Chem., 2003,
10, 51–80; (g) L. Weber, Curr. Med. Chem., 2002, 9, 2085–2093;
(h) A. Tuch and S. Walle, in Handbook of Combinatorial Chemistry:
´
cycloaddition.
which could undergo inverse electron demand Diels–Alder
cycloaddition with further enone to drive D, which can then
eliminate; or, the enamine intermediate B can protonate
(to give E) and react with the enone in a Lewis-acid assisted
Michael addition process to derive F. This species then
requires a cyclisation, presumably via an enolate equivalent
cyclising onto an unsaturated iminium ion such as G to derive
the same intermediate D, from which methanol elimination
can occur.
Drugs, Catalysts, Materials, ed. K. C. Nicolaou, R. Hanko and
W. Hartwig, Wiley-VCH, Weinheim, 2002, vol. 2, pp. 685–705;
(i) A. de Meijere, P. von Zeschwitz, H. Nuske and B. Stulgies,
J. Organomet. Chem., 2002, 653, 129–140; (j) I. Ugi and S. Heck,
Comb. Chem. High Throughput Screening, 2001, 4, 1–34; (k) I. Ugi
and A. Domling, in Combinatorial Chemistry: A Practical Approach,
¨
ed. H. Fenniri, Oxford University Press, Oxford, 2000, pp. 287–302;
(l) I. Ugi, Acta Polytechnica Scand., Chem. Technol. Ser., 1997,
244, 64–66; (m) R. W. Armstrong, A. P. Combs, P. A. Tempest,
S. D. Brown and T. A. Keating, Acc. Chem. Res., 1996, 29,
123–131; (n) I. Marek, Tetrahedron, 2005, 61, 11309–11519;
(o) E. Airiau, N. Girard, A. Mann, J. Salvadori and M. Taddei,
Org. Lett., 2009, 11, 5314–5317.
Further evidence for the process outlined in Scheme 1 comes
from the isolation of compound 6 in 27% from the reaction
involving aniline and p-nitrobenzaldehyde (See Table 1, entry 6),
which is a clear example of the importance of species D in
Scheme 1. Single crystal X-ray analysis clearly reveals that this
compound is as shown in Fig. 2 and must correspond to the
last intermediate before b-elimination occurs to give the
dihydropyridine, as outlined in Scheme 1.
5 (a) A. K. McFarlane, G. Thomas and A. Whiting, Tetrahedron
Lett., 1993, 34, 2379–2382; (b) A. K. McFarlane, G. Thomas and
A. Whiting, J. Chem. Soc., Perkin Trans. 1, 1995, 2803–2808;
(c) A. Whiting and C. M. Windsor, Tetrahedron, 1998, 54,
6035–6050; (d) S. Bromidge, P. Wilson and A. Whiting, Tetrahedron
Lett., 1998, 39, 8905–8908; (e) P. E. Morgan, A. Whiting and
R. McCague, J. Chem. Soc., Perkin Trans. 1, 2000, 515–525;
(f) S. Hermitage, D. Jay and A. Whiting, Tetrahedron Lett.,
2002, 43, 9633–9636; (g) S. Guillarme and A. Whiting, Synlett,
2004, 711–713; (h) S. Guillarme, S. Hermitage, J. A. K. Howard,
D. A. Jay, A. Whiting and D. S. Yufit, Synlett, 2004, 708–710;
(i) S. Hermitage, J. A. K. Howard, D. Jay, R. G. Pritchard,
M. R. Probert and A. Whiting, Org. Biomol. Chem., 2004, 2,
2451–2460; (j) L. Di Bari, S. Guillarme, S. Hermitage, D. A. Jay,
G. Pescitelli and A. Whiting, Chirality, 2005, 17, 323–331; (k) L. Di
Bari, S. Guillarme, J. Hanan, A. P. Henderson, J. A. K. Howard,
G. Pescitelli, M. R. Probert, P. Salvadori and A. Whiting, Eur. J.
Org. Chem., 2007, 5771–5779.
To conclude, we have shown a general multi-component
synthesis for the formation of dihydropyridines through a
6 P. R. Girling, T. Kiyoi and A. Whiting, Org. Biomol. Chem., 2011,
9, 3105–3121.
7 A. Hantzsch, Justus Liebigs Ann. Chem., 1882, 215, 1–82.
8 (a) G. Inouye, Nippon Kagaku Zassi, 1958, 79, 1243–1246;
(b) N. Sugiyama, G. Inouye and K. Ito, Bull. Chem. Soc. Jpn.,
1962, 35, 927–928.
9 G. Inouye, Nippon Kagaku Zassi, 1959, 80, 1061–1063.
10 O. V. Dolomanov, O. V. Baushis, R. J. Gildea, J. A. K. Howard
and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
Fig. 2 X-ray molecular structure 6 (Olex2 graphics).10
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4893–4895 4895