1198
J. M. Chen et al. / Bioorg. Med. Chem. Lett. 12 (2002) 1195–1198
Table 1. In vitro activity of alkyl and propargylic ether P10 groups
References and Notes
1. Choy, E. H. S.; Panayi, G. S. N. Engl. J. Med. 2001, 344, 907.
2. Garrison, L.; McDonnell, N. D. Ann. Rheum. Dis. 1999,
58 (Suppl. I), 165.
3. (a) Nelson, F. C.; Zask, A. Exp. Opin. Invest. Drugs
1999, 8, 383. (b) Lowe, C. Exp. Opin. Ther. Pat. 1998, 8, 1309.
(c) Newton, R. C.; Decicco, C. P. J. Med. Chem. 1999, 42,
2295.
Compd
R
MMP-1a MMP-9a MMP-13a TACEa
4. Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med.
Chem. 2001, 8, 425.
5. Barlaam, B.; Bird, T. G.; Lambert-van der Brempt, C.;
Campbell, D.; Foster, S. J.; Maciewicz, R. J. Med. Chem.
1999, 42, 4890.
3a
6a
6b
6c
6d
CH3
114
113
1616
2488
11
15
304
21
21
5211
154
68
32
CH2CCH
CH2CCCH3
(CH2)3CH3
16
67
34
CH2CC(CH2)3CH3 53% (10)
389
701
6. (a) Xue, C.-B.; Voss, M. E.; Nelson, D. J.; Duan, J. J.-W.;
Cherney, R. J.; Jacobson, I. C.; He, X.; Roderick, J.; Chen, L.;
Corbett, R. L.; Wang, L.; Meyer, D. T.; Kennedy, K.;
DeGrado, W. F.; Hardman, K. D.; Teleha, C. A.; Jaffee, B. D.;
Liu, R.-Q.; Copeland, R. A.; Covington, M. B.; Christ, D. D.;
Trzaskos, J. M.; Newton, R. C.; Magolda, R. L.; Wexler,
R. R.; Decicco, C. P. J. Med. Chem. 2001, 44, 2636. (b) Xue,
C.-B.; He, X.; Corbett, R. L.; Roderick, J.; Wasserman, Z. R.;
Liu, R.-Q.; Jaffee, B. D.; Covington, M. B.; Qian, M.; Trzas-
kos, J. M.; Newton, R. C.; Magolda, R. L.; Wexler, R. R.;
Decicco, C. P. J. Med. Chem. 2001, 44, 3351. (c) For another
series of macrocyclic TACE inhibitors, see: Holms, J.; Mast,
K.; Marcotte, P.; Elmore, I.; Li, J.; Pease, L.; Glaser, K.;
Morgan, D.; Michaelides, M.; Davidsen, S. Bioorg. Med.
Chem. Lett. 2001, 11, 2907.
7. (a) Levin, J. I.; Du, M. T.; DiJoseph, J. F.; Killar, L. M.;
Sung, A.; Walter, T.; Sharr, M. A.; Roth, C. E.; Moy, F. J.;
Powers, R.; Jin, G.; Cowling, R.; Skotnicki, J. S. Bioorg. Med.
Chem. Lett. 2001, 11, 235. (b) Levin, J. I.; Chen, J.; Du, M.;
Hogan, M.; Kincaid, S.; Nelson, F.; Venkatesan, A. M.;
Wehr, T.; Zask, A.; DiJoseph, J.; Killar, L. M.; Skala, S.;
Sung, A.; Sharr, M.; Roth, C.; Jin, G.; Cowling, R.; Mohler,
K. M.; Black, R. A.; March, C. J.; Skotnicki, J. S. Bioorg.
Med. Chem. Lett. 2001, 11, 2189. (c) Levin, J. I.; Chen, J. M.;
Du, M. T.; Nelson, F. C.; Wehr, T.; DiJoseph, J. F.; Killar,
L. M.; Skala, S.; Sung, A.; Sharr, M. A.; Roth, C. E.; Jin, G.;
Cowling, R.; Di, L.; Sherman, M.; Xu, Z. B.; March, C. J.;
Mohler, K. M.; Black, R. A.; Skotnicki, J. S. Bioorg. Med.
Chem. Lett. 2001, 11, 2975.
8. Chen, J. M.; Nelson, F. C.; Levin, J. I.; Mobilio, D.; Moy,
F. J.; Nilakantan, R.; Zask, A.; Powers, R. J. J. Am. Chem.
Soc. 2000, 122, 9648.
9. Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bour-
enkov, G. P.; Bartunik, H.; Ellestad, G. A.; Reddy, P.; Wolf-
son, M. F.; Rauch, C. T.; Castner, B. J.; Davis, R.; Clarke,
H. R. G.; Petersen, M.; Fitzner, J. N.; Cerreti, D. P.; March,
C. J.; Paxton, R. J.; Black, R. A.; Bode, W. Proc. Natl. Acad.
Sci. U.S.A. 1998, 95, 3408.
10. (a) Moy, F. J.; Chanda, P. K.; Chen, J. M.; Cosmi, S.;
Edris, W.; Levin, J. I.; Powers, R. J. Mol. Biol. 2000, 302, 671.
(b) Moy, F. J.; Chanda, P. K.; Cosmi, S.; Edris, W.; Levin,
J. I.; Powers, R. J. Biomol. NMR 2000, 17, 269.
11. (a) Bode, W.; Fernandez-catalan, C.; Tschesche, H.;
Grams, F.; Nagase, H.; Maskos, K. Cell. Mol. Life Sci. 1999,
55, 639. (b) Lovejoy, B.; Welch, A. R.; Carr, S.; Luong, C.;
Broka, C.; Hendricks, R. T.; Campbell, J. A.; Walker,
K. A. M.; Martin, R.; Van Wart, H.; Browner, M. F. Nat.
Struct. Biol. 1999, 6, 217.
aIC50 (nM) or % inhibition (mM).
TACE over the MMPs, validating our design strategy.
In particular, 6b is now 100-fold selective for TACE
over MMP-1. That the carbon–carbon triple bond
increases both TACE potency and selectivity is shown
by a comparison of butynyl ether 6b to butyl ether 6c,
which is less active against TACE and nonselective ver-
sus MMP-9 and MMP-13. Extending the acetylenic P10
group further into the S10–S30 channel, as in heptynyl
ether 6d, still affords a potent inhibitor of TACE and
further increases selectivity over both MMP-1 and
MMP-13 relative to 6b. Propargylic ethers 6b and 6d
have therefore provided a dramatic improvement in
TACE/MMP selectivity while retaining or improving
TACE potency.
In summary, we have succeeded in utilizing structure-
based computational design strategies to discover a
novel series of potent TACE inhibitors with excellent
selectivity over MMP-1. Acetylenic P10 groups were
suggested by a homology model of TACE that had
revealed a unique S10–S30 channel for the enzyme, later
confirmed by an X-ray crystal structure. This acetylenic
P10 moiety is also amenable to further chemical modifi-
cations, providing a handle for drug property optimiza-
tion. The extension of this work to additional
propargylic ether P10 groups and their evaluation versus
TACE enzyme and in a cellular assay measuring the
inhibition of TNF-a production is described in the fol-
lowing communication.
The future therapeutic use of TACE inhibitors for the
treatment of diseases modulated by TNF-a may depend
on the resolution of several issues. Included among
these are the determination of a desirable selectivity
profile with respect to the MMPs and the ADAMs, as
well as the impact of TACE inhibition on a-secretase
activity. We believe that the potency and selectivity of
this new class of inhibitor represents an excellent lead
for the development of drugs for the treatment of
rheumatoid arthritis.
12. Levin, J. I.; Du, M. T. Synth. Commun. 2002, in press.
13. (a) Weingarten, H.; Feder, J. Anal. Biochem. 1985, 147,
437. (b) Inhibitor concentrations were run in triplicate. MMP
IC50 determinations were calculated from a four-parameter
logistic fit of the data within a single experiment. (c) Jin, G.;
Black, R.; Wolfson, M.; Rauch, C.; Ellestad, G. A.; Cowling,
R., Anal. Biochem. 2002, 302, 269.
Acknowledgements
We thank Drs. Roy A. Black, Rebecca Cowling, and
Jerauld Skotnicki for helpful discussions during the
course of this work.