3958
allylstannane to an oxocarbenium ion generated from a phthalide acetate providing a facile preparation
of functionalized 1(3H)-isobenzofuranones.
The presence of a substituent at C2 or C3 on the allylstannane (15 and 16, respectively) did not affect
the outcome of the allylation reaction although a lower yield was obtained in the latter case with allyl
phthalide 27 only being obtained in 43% yield. Use of methyl substituted allylstannanes 15 and 16 finally
led to the formation of arylspiroacetals 26 and 29, respectively, as a 1:1 mixture of diastereomers.
In the present work our goal was to convert the allylated 1(3H)-isobenzofuranones to aryl spiroacetals.
Hydroboration of alkenes 18, 21, 24 and 27 with BH3·THF cleanly afforded the primary alcohols 19,
22, 25 and 28, respectively. Conversion of these primary alcohols to aryl spiroacetals 20, 23, 26 and
29 was then effected by oxidative cyclization using iodobenzene diacetate and iodine under photolytic
conditions. Similar oxidative cyclizations have been used by this research group as a method to prepare
bis-spiroacetals.20
Whilst oxidative cyclization of alcohols 19, 22, 25 and 28 led to the formation of a
spiro[1(3H)isobenzofuran, 20-tetrahydrofuran] ring system, the homologous spiro[1(3H)isobenzofuran,
20-tetrahydropyran] ring system that is present in the papulacandins was formed by oxidative cyclization
of alcohol 31. Alcohol 31 was obtained by desilylation of silyl ether 30 which in turn was prepared via
treatment of phthalide acetate 13 with functionalized allylstannane 17.
In conclusion, we have developed an efficient procedure for the synthesis of arylspiroacetals similar to
those present in the potent antifungal agents, the papulacandins. The methodology combines the use of a
novel allylation of phthalide acetates followed by an oxidative cyclization.
References
1. For reviews on the synthesis of spiroacetals, see: (a) Perron, F.; Albizati, K. F. Chem Rev. 1989, 89, 1617; (b) Boivin, T. L.
B. Tetrahedron 1987, 43, 3309; (c) Kluge, A. F. Heterocycles 1986, 24, 1699.
2. Traxler, P.; Gruner, J.; Auden, J. A. L. J. Antibiot. 1977, 30, 289.
3. Rommele, G.; Traxler, P.; Wehrli, W. J. Antibiot. 1983, 36, 1539.
4. Van Middlesworth, F.; Olmstead, M. N.; Schmatz, D.; Bartizal, R.; Fromtling, R.; Bills, G.; Nolstadt, K.; Honeycutt, S.;
Zweernik, M.; Garrity, G.; Wilson, K. J. Antibiot. 1991, 44, 45.
5. Kaneto, R.; Chiba, H.; Agematu, H.; Shibamoto, N.; Yoshioka, T.; Nishada, H.; Okamoto, M. J. Antibiot. 1993, 46, 247.
6. Danishefsky, S.; Philips, G.; Ciufolini, M. Carbohydrate Res. 1987, 171, 317.
7. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808.
8. Dubois, E.; Beau, J.-M. Carbohydrate Res. 1992, 223, 157.
9. Rosenblum, S. B.; Bihovsky, R. J. Am. Chem. Soc. 1990, 112, 2746.
10. Czernecki, S.; Perlat, M.-C. J. Org. Chem. 1991, 56, 6289.
11. Schmidt, R. R.; Frick, W. Tetrahedron 1988, 44, 7163.
12. Barrett, A. G. M.; Pena, M.; Willardsen, J. A. J. Chem. Soc., Chem. Commun. 1995, 1147.
13. Carretero, J. C.; de Diego, J. E.; Hamdouchi, C. Tetrahedron 1999, 55, 15159.
14. Brimble, M. A.; Robertson, S. G. Tetrahedron 1996, 52, 9553.
15. Freskos, J. N.; Morrow, G. W.; Swenton, J. S. J. Org. Chem. 1985, 50, 805. Khanapure, S. P.; Reddy, R. T.; Biehl, E. R. J.
Org. Chem. 1987, 52, 5685.
16. Concepcion, J. J.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.; Suarez, E. Tetrahedron Lett. 1984, 25, 1953.
17. Naruta, Y.; Nishigaichi, Y.; Maruyama, K. Chem. Lett. 1986, 1857.
18. Weigand, S.; Bruckener, R. Synthesis 1995, 475.
19. All new compounds gave satisfactory spectroscopic and analytical data.
20. For a review on the synthesis of bis-spiroacetals, see: Brimble, M. A.; Fares, F. A. Tetrahedron 1999, 55, 7661.