Published on Web 05/17/2005
Controlling the Morphology of Cross â-Sheet Assemblies by
Rational Design
Songpon Deechongkit, Evan T. Powers, Shu-Li You, and Jeffery W. Kelly*
Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, La Jolla, California 92037
Received January 27, 2005; E-mail: jkelly@scripps.edu
Abstract: Low molecular weight peptidomimetics with simple amphiphilic sequences can help to elucidate
the structures of cross â-sheet assemblies, such as amyloid fibrils. The peptidomimetics described herein
comprise a dibenzofuran template, two peptide strands made up of alternating hydrophilic and hydrophobic
residues, and carboxyl termini, each of which can be varied to probe the structural requirements for â-sheet
self-assembly processes. The dibenzofuran template positions the strands approximately 10 Å apart, allowing
corresponding hydrophobic side chains in the strands to pack into a collapsed U-shaped structure. This
conformation is stabilized by hydrophobic interactions, not intramolecular hydrogen bonds. Intermolecular
stacking of the collapsed peptidomimetics, enabled by intermolecular hydrogen bonding and hydrophobic
interactions, affords 25-27 Å wide protofilaments having a cross â-sheet structure. Association of
protofilaments, mediated by the dibenzofuran substructures and driven by the hydrophobic effect, affords
50-60 Å wide filaments. These widths can be controlled by changing the length of the peptide strands.
Further assembly of the filaments into fibrils or ribbons can be controlled by modification of the template,
C-terminus, and buffer ion composition.
responsive gels16,19,22,23 and scaffolds for tissue regeneration26,28
to substrates for crystal growth.21 Exploiting the potential of
Introduction
Many peptides and proteins form â-sheet-rich fibrillar ag-
gregates. This phenomenon has attracted the attention of
scientists from many fields because such assemblies both enable
biological function and appear to cause pathology.1 For example,
the formation of fibrillar cross â-sheet assemblies results in
functional materials, such as chorion, which is the main
component of silk moth eggshells,2 or curli fibrils, which are
used by Escherichia coli (E. coli) in the colonization of
surfaces.3 In contrast, the misassembly of peptides or proteins
can lead to cross â-sheet assemblies known as amyloid, the
process of amyloidogenesis being implicated as the cause of
several neurodegenerative diseases, including familial amyloid
polyneuropathy and Alzheimer’s disease.4-7 Many authors have
written about the potential use of ordered peptide assemblies
as materials,8-30 with suggested applications ranging from
â-sheet-based peptide assemblies requires an understanding of
their internal structures that is detailed enough to allow rational
(13) Moses, J. P.; Satheeshkumar, K. S.; Murali, J.; Alli, D.; Jayakumar, R.
Langmuir 2003, 19, 3413-3418.
(14) Sagis, L. M. C.; Veerman, C.; van der Linden, E. Langmuir 2004, 20, 924-
927.
(15) Matsumura, S.; Uemura, S.; Mihara, H. Chem.-Eur. J. 2004, 10, 2789-
2794.
(16) Aggeli, A.; Bell, M.; Boden, N.; Keen, J. N.; Knowles, P. F.; McLeish, T.
C.; Pitkeathly, M.; Radford, S. E. Nature 1997, 386, 259-262.
(17) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish,
T. C.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
11857-11862.
(18) Aggeli, A.; Bell, M.; Carrick, L. M.; Fishwick, C. W.; Harding, R.; Mawer,
P. J.; Radford, S. E.; Strong, A. E.; Boden, N. J. Am. Chem. Soc. 2003,
125, 9619-9628.
(19) Aggeli, A.; Bell, M.; Boden, N.; Carrick, L. M.; Strong, A. E. Angew.
Chem., Int. Ed. 2003, 42, 5603-5606.
(20) Kayser, V.; Turton, D. A.; Aggeli, A.; Beevers, A.; Reid, G. D.; Beddard,
G. S. J. Am. Chem. Soc. 2004, 126, 336-343.
(21) Meegan, J. E.; Aggeli, A.; Boden, N.; Brydson, R.; Brown, A. P.; Carrick,
L.; Brough, A. R.; Hussain, A.; Ansell, R. J. AdV. Funct. Mater. 2004, 14,
31-37.
(1) Huff, M. E.; Balch, W. E.; Kelly, J. W. Curr. Opin. Struct. Biol. 2003, 13,
674-682.
(2) Iconomidou, V. A.; Vriend, G.; Hamodrakas, S. J. FEBS Lett. 2000, 479,
141-145.
(22) Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.;
Kretsinger, J. J. Am. Chem. Soc. 2002, 124, 15030-15037.
(23) Pochan, D. J.; Schneider, J. P.; Kretsinger, J.; Ozbas, B.; Rajagopal, K.;
Haines, L. J. Am. Chem. Soc. 2003, 125, 11802-11803.
(24) Rajagopal, K.; Schneider, J. P. Curr. Opin. Struct. Biol. 2004, 14, 480-
486.
(3) Chapman, M. R.; Robinson, L. S.; Pinkner, J. S.; Roth, R.; Heuser, J.;
Hammar, M.; Normark, S.; Hultgren, S. J. Science 2002, 295, 851-855.
(4) Sipe, J. D. Crit. ReV. Clin. Lab. Sci. 1994, 31, 325-354.
(5) Sipe, J. D.; Cohen, A. S. J. Struct. Biol. 2000, 130, 88-98.
(6) Kelly, J. W. Curr. Opin. Struct. Biol. 1996, 6, 11-17.
(7) Selkoe, D. J. Nature 2003, 426, 900-904.
(25) Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Proc. Natl. Acad. Sci. U.S.A.
1993, 90, 3334-3338.
(8) Krejchi, M. T.; Atkins, E. D.; Waddon, A. J.; Fournier, M. J.; Mason, T.
L.; Tirrell, D. A. Science 1994, 265, 1427-1432.
(26) Holmes, T. C.; de Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 6728-6733.
(9) Winningham, M. J.; Sogah, D. Y. Macromolecules 1997, 30, 862-876.
(10) Yamada, N.; Ariga, K.; Naito, M.; Matsubara, K.; Koyama, E. J. Am. Chem.
Soc. 1998, 120, 12192-12199.
(27) Zhang, S.; Marini, D. M.; Hwang, W.; Santoso, S. Curr. Opin. Chem. Biol.
2002, 6, 865-871.
(28) Semino, C. E.; Kasahara, J.; Hayashi, Y.; Zhang, S. G. Tissue Eng. 2004,
10, 643-655.
(11) MacPhee, C. E.; Dobson, C. M. J. Am. Chem. Soc. 2000, 122, 12707-
12713.
(29) Choo, D. W.; Schneider, J. P.; Graciani, N. R.; Kelly, J. W. Macromolecules
1996, 29, 355-366.
(12) Lopez De La Paz, M.; Goldie, K.; Zurdo, J.; Lacroix, E.; Dobson, C. M.;
Hoenger, A.; Serrano, L. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16052-
16057.
(30) Lashuel, H. A.; Labrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly, J. W. J.
Am. Chem. Soc. 2000, 122, 5262-5277.
9
8562
J. AM. CHEM. SOC. 2005, 127, 8562-8570
10.1021/ja050558c CCC: $30.25 © 2005 American Chemical Society