LETTER
Versatile Synthesis of a-Amino Acid Derivatives
43
Table 3 Formation of Thiol Esters23
was reported, see: Denmark, S. E.; Fan, Y. J. Am. Chem. Soc.
2003, 125, 7825.
(5) (a) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc.
1996, 118, 2574. (b) Strocker, A. M.; Keating, T. A.;
Tempest, P. A.; Armstrong, R. W. Tetrahedron Lett. 1996,
37, 1149.
(6) Lindhorst, T.; Bock, H.; Ugi, I. Tetrahedron 1999, 55, 7411.
(7) Geller, J.; Ugi, I. Chem. Scr. 1983, 22, 85.
(8) Mjalli, A. M. M.; Sarshar, S.; Baiga, T. J. Tetrahedron Lett.
1996, 37, 2943.
Entry
X
Y
Z
Temp Time
Yield (%)
(°C)
(min)
(9) Linderman, R. J.; Binet, S.; Petrich, S. R. J. Org. Chem.
1999, 64, 336.
1
2
3
4
5
6
7
Ph
Ph
Ph
Ph
Me
Ph
Ph
Bn
Bn
Bn
Bn
Bn
Ph
Ph
i-Pr
H
0
10
83 (16a)
79 (16b)
75 (16c)
66 (16d)
78 (16e)
86 (16f)
68 (16g)
(10) (a) For the use of N-tert-butoxycarbonylation to activate
amides, see: Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org.
Chem. 1983, 48, 2425. (b) For its application to the Ugi 4CC
reaction, see: Hulme, C.; Ma, L.; Cherrier, M.-P.; Romano,
J. J.; Morton, G. Tetrahedron Lett. 2000, 41, 1883.
(11) For the use of N-nitrosation to activate amides, see:
(a) White, E. H. J. Am. Chem. Soc. 1955, 77, 6011.
(b) Evans, D. A.; Carter, P. H.; Dinsmore, C. J.; Barrow, J.
C.; Katz, J. I.; Kung, D. W. Tetrahedron Lett. 1997, 38,
4535. (c) Berenguer, R.; Garcia, J.; Vilarrasa, J. Synthesis
1989, 305. (d) For its applications to the Ugi 4CC reaction,
see: Isenring, H. P.; Hofheinz, W. Synthesis 1981, 385.
(e) Also see: Isenring, H. P.; Hofheinz, W. Tetrahedron
1983, 39, 2591.
0
10
Me
Ph
0
10
0
10
i-Pr
i-Pr
Ph
0
10
0
10
0
10
oxazolidinones and thiol esters would allow us to synthe-
(12) Synthesis of Isonitrile 9: To a stirred solution of 4,4-
dimethyloxazoline (0.997 g, 10.1 mmol) in THF (10 mL)
under Ar atmosphere at –78 °C, was added dropwise n-BuLi
(1.1 M solution in hexane, 9.60 mL, 10.6 mmol) in a
duration of 5 min and stirred at same temperature for 1 h
followed by dropwise addition of phenyl chloroformate
(1.40 mL, 10.7 mmol). After stirring for 5 min, the reaction
mixture was warmed to ambient temperature and diluted
with Et2O, and water was added to the mixture. The organic
layer was separated and washed with brine, dried over
Na2SO4 and filtered. The solvent was removed under
reduced pressure, the resulting residue was purified by silica
gel chromatography (EtOAc–hexane = 1:9–1:4) to afford
1.10 g of 9 (49.7%). IR (film): 2991, 2136, 1767, 1592,
1496, 1457, 1401, 1378, 1258, 1074, 1024, 970, 879, 835,
775, 735 cm–1. 1H NMR (400 MHz, CDCl3): d = 7.45–7.19
(m, 5 H), 4.21 (s, 2 H), 1.53 (s, 6 H). 13C NMR (100 MHz,
CDCl3): d = 156.1, 153.1, 150.8, 129.4, 126.1, 120.8, 72.9,
56.1, 25.6. HRMS (FAB): m/z calcd for C12H13NO3:
219.0895; found: 219.0900.
size a variety of N-acylamino acid derivatives.
Further applications of this methodology to the syntheses
of a range of peptidomimetic derivatives and/or natural
products are under investigation in our laboratories.
Scheme 5
(13) Meyers, A. I.; Collington, E. W. J. Am. Chem. Soc. 1970, 92,
6676.
References
(14) General Procedure for the Ugi 4CC with Isonitrile 9,
Synthesis of 10a: To a stirred solution of isonitrile 9 (223
mg, 1.02 mmol), isobutylaldehyde (0.310 mL, 3.40 mmol),
and benzoic acid (128 mg, 1.05 mmol) in MeOH (3.5 mL,
0.19 M) was added dropwise benzylamine (74 mL, 0.68
mmol) within 2 min at ambient temperature. After stirring
for 60 min, the solvent was removed under reduced pressure.
The resultant crude mixture was purified by silica gel
chromatography (EtOAc–hexane = 1:9–1:2) to afford 310
mg of 10a (91%) as a pale yellow foam. IR (film): 3301,
3063, 2968, 1764, 1680, 1620, 1545, 1496, 1457, 1367,
1263, 1211, 1066, 963, 918, 774, 734 cm–1. 1H NMR (400
MHz, CDCl3): d = 7.60–7.05 (m, 15 H), 4.67 (d, J = 16 Hz,
1 H), 4.45 (m, 2 H), 4.29 (d, J = 11 Hz, 2 H), 2.80 (m, 1 H),
1.36 (m, 6 H), 1.02 (m, 1 H). 13C NMR (100 MHz, CDCl3):
d = 174.0, 170.2, 153.6, 151.1, 136.6, 136.5, 129.8, 129.5,
128.5, 128.4, 127.8, 127.7, 126.7, 126.0, 121.0, 76.7, 72.1,
54.0, 52.8, 27.2, 24.3, 23.8, 19.8, 19.5. HRMS (FAB): m/z
calcd for C30H34N2O5: 502.2468; found: 502.2485.
(1) For reviews of multicomponent reactions with isonitriles,
see: (a) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10,
51. (b) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39,
3168. (c) Gokel, G.; Lüdke, G.; Ugi, I. In Isonitrile
Chemistry; Ugi, I., Ed.; Academic: New York, 1971, 145–
199.
(2) (a) Ugi, I.; Myer, R.; Fetzer, U.; Steinbrückner, C. Angew.
Chem. 1959, 71, 386. (b) Ugi, I.; Steinbrückner, C. Angew.
Chem. 1960, 72, 267.
(3) (a) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.;
Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.
(b) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39,
3200.
(4) (a) For a recent example of the stereoselective Ugi 4CC
reaction using a chiral amine component, see: Ross, G. F.;
Herdtweck, E.; Ugi, I. Tetrahedron 2002, 58, 6127; and
references therein. (b) Recently, the first example of
catalytic asymmetric a-addition of isonitrile to an aldehyde
Synlett 2004, No. 1, 41–44 © Thieme Stuttgart · New York