3708
Inorg. Chem. 2000, 39, 3708-3711
Chart 1
Model Complexes for the Active Form of
Galactose Oxidase. Physicochemical Properties of
Cu(II)- and Zn(II)-Phenoxyl Radical Complexes
Shinobu Itoh,*,† Masayasu Taki,‡ Hideyuki Kumei,‡
Shigehisa Takayama,‡ Shigenori Nagatomo,§
Teizo Kitagawa,*,§ Norio Sakurada,|
Ryuichi Arakawa,*,| and Shunichi Fukuzumi*,‡
Department of Chemistry, Graduate School of Science,
Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka 558-8585, Japan, Department of Material and Life
Science, Graduate School of Engineering, Osaka University,
CREST, Japan Science and Technology Corporation, 2-1
Yamada-oka, Suita, Osaka 565-0871, Japan, Institute for
Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and
Department of Applied Chemistry, Faculty of Engineering,
Kansai University, 3-3-35 Yamate-cho, Suita,
Recent model studies on GAO have provided detailed insights
into the physicochemical properties of the phenolate and the
phenoxyl radical states of the cofactor both in the metal-free
form and in the metal complexes.7-15 Efficient catalytic reactions
for the alcohol oxidation have also been developed by mimick-
ing the enzymatic functions in model systems.10,11,13 However,
few examples have been reported that can reproduce both the
spectroscopic characteristics and the chemical functions of the
active form of GAO (fully oxidized state). Moreover, little
attention has so far been focused on the electronic effects of
the thioether group of the cofactor on the physicochemical
properties and the reactivity of the Cu(II)-phenoxyl radical
species in model systems. In this context, we recently developed
a model complex for the active form of GAO using a cofactor-
containing ligand 1H,16 with which we have successfully
demonstrated the important role of the copper ion in the efficient
two-electron oxidation of alcohols.17 In this paper, we report
detailed characterizations of the Cu(II)- and Zn(II)-phenoxyl
Osaka 564-8680, Japan
ReceiVed August 24, 1999
Introduction
Protein radicals have now been well-recognized to play a
crucial role in several biologically important redox processes.1
Galactose oxidase (GAO, EC 1.1.3.9) is one of the most well-
characterized examples of such systems, where a tyrosyl radical
directly coordinated to the Cu(II) center is the active species in
the aerobic oxidation of D-galactose and primary alcohols to
the corresponding aldehydes (eq 1).2-4 The crystal structure of
(7) (a) Itoh, S.; Hirano, K.; Furuta, A.; Komatsu, M.; Ohshiro, Y.; Ishida,
A.; Takamuku, S.; Kohzuma, T.; Nakamura, N.; Suzuki, S. Chem.
Lett. 1993, 2099. (b) Itoh, S.; Takayama, S.; Arakawa, R.; Furuta, A.;
Komatsu, M.; Ishida, A.; Takamuku, S.; Fukuzumi, S. Inorg. Chem.
1997, 36, 1407.
(8) (a) Whittaker, M. M.; Chuang, Y.-Y.; Whittaker, J. W. J. Am. Chem.
Soc. 1993, 115, 10029. (b) Whittaker, M. M.; Duncan, W. R.;
Whittaker, J. W. Inorg. Chem. 1996, 35, 382.
(9) (a) Halfen, J. A.; Young, V. G., Jr.; Tolman, W. B. Angew. Chem.
1996, 108, 1832; Angew. Chem., Int. Ed. Engl. 1996, 108, 1832. (b)
Halfen, J. A.; Jazdzewski, B. A.; Mahapatra, S.; Berreau, L. M.;
Wilkinson, E. C.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1997,
119, 8217.
(10) Kitajima, N.; Whang, K.; Moro-oka, Y.; Uchida, A.; Sasada, Y. J.
Chem. Soc., Chem. Commun. 1986, 1504.
(11) (a) Wang, Y.; Stack, T. D. P. J. Am. Chem. Soc. 1996, 118, 13097.
(b) Wang, Y.; DuBois, J. L.; Hedman, B.; Hodgson, K. O.; Stack, T.
D. P. Science 1998, 279, 537.
(12) Sokolowski, A.; Mu¨ller, J.; Weyhermu¨ller, T.; Schnepf, R.; Hilde-
brandt, P.; Hildenbrand, K.; Bothe, E.; Wieghardt, K. J. Am. Chem.
Soc. 1997, 119, 8889.
(13) (a) Chaudhuri, P.; Hess, M.; Flo¨rke, U.; Wieghardt, K. Angew. Chem.
1998, 110, 2340; Angew. Chem., Int. Ed. Engl. 1998, 37, 2217. (b)
Chaudhuri, P.; Hess, M.; Weyhermu¨ller, T.; Wieghardt, K. Angew.
Chem. 1999, 111, 1165; Angew. Chem., Int. Ed. Engl. 1999, 38, 1095.
(c) Chaudhuri, P.; Hess, M.; Mu¨ller, J.; Hildenbrand, K.; Bill, E.;
Weyhermu¨ller, T.; Wieghardt, K. J. Am. Chem. Soc. 1999, 121, 9599.
(14) Ruf, M.; Pierpont, C. G. Angew. Chem. 1998, 110, 1830; Angew.
Chem., Int. Ed. Engl. 1998, 37, 1736.
RCH2OH + O2 f RCHO + H2O2
(1)
galactose oxidase at 1.7 Å resolution has clearly shown that
the tyrosine residue (Tyr272, the precursor of the tyrosyl radical)
is covalently bound to the sulfur atom of the adjacent Cys228
at the R-position of the phenol ring as illustrated in Chart 1.2
Recently, such a phenoxyl radical-copper catalytic motif has
also been found in glyoxal oxidase (GLO) from Phanerochaete
chrysosporium and in the prokaryotic FbfB protein.5,6
† Osaka City University.
‡ Osaka University.
§ Institute for Molecular Science.
| Kansai University.
(1) Stubbe, J.; van der Donk, W. A. Chem. ReV. 1998, 98, 705 and
references therein.
(2) (a) Ito, N.; Phillips, S. E. V.; Stevens, C.; Ogel, Z. B.; McPherson,
M. J.; Keen, J. N.; Yadav, K. D. S.; Knowles, P. F. Nature 1991,
350, 87. (b) Ito, N.; Phillips, S. E. V.; Yadav, K. D. S.; Knowles, P.
F. J. Mol. Biol. 1994, 238, 794.
(3) (a) Whittaker, M. M.; Whittaker, J. W. J. Biol. Chem. 1988, 263, 6074.
(b) Whittaker, M. M.; DeVito, V. L.; Asher, S. A.; Whittaker, J. W.
J. Biol. Chem. 1989, 264, 7104. (c) Whittaker, M. M.; Whittaker, J.
W. J. Biol. Chem. 1990, 265, 9610. (d) Whittaker, M. M.; Whittaker,
J. W. Biophys. J. 1993, 64, 762. (e) Whittaker, M. M.; Ballou, D. P.;
Whittaker, J. W. Biochemistry 1998, 37, 8426.
(4) (a) Branchaud, B. P.; Montague-Smith, M. P.; Kosman, D. J.; McLaren,
F. R. J. Am. Chem. Soc. 1993, 115, 798. (b) Wachter, R. M.;
Branchaud, B. P. Biochemistry 1996, 35, 14425. (c) Wachter, R. M.;
Montague-Smith, M. P.; Branchaud, B. P. J. Am. Chem. Soc. 1997,
119, 7743.
(5) (a) Kersten, P. J. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 2936. (b)
Whittaker, M. M.; Kersten, P. J.; Nakamura, N.; Sanders-Loehr, J.;
Schweizer, E. S.; Whittaker, J. W. J. Biol. Chem. 1996, 271, 681.
(6) Bork, P.; Doolittle, R. F. J. Mol. Biol. 1994, 236, 1277.
(15) (a) Halcolm, M. A.; Chia, L. M. L.; Liu, X.; McInnes, E. J. L.;
Yellowlees, L. J.; Mabbs, F. E.; Davies, J. E. Chem. Commun. 1998,
2465. (b) Halcolm, M. A.; Chia, L. M. L.; Liu, X.; McInnes, E. J. L.;
Yellowlees, L. J.; Mabbs, F. E.; Scowen, I. J.; McPartlin, M.; Davies,
J. E. J. Chem. Soc., Dalton Trans. 1999, 1753.
(16) To distinguish the different states of the cofactor moiety of the ligands
more clearly, the symbols of LH, L-, and L• (L ) 1 or 2) are used
to denote the phenol, phenolate, and phenoxyl radical forms, respec-
tively.
10.1021/ic9910211 CCC: $19.00 © 2000 American Chemical Society
Published on Web 07/13/2000