Harrison et al.
lecular alkylation reaction took place.13 Stoichiometric silver
salts have been used for pyrrole synthesis, as well.14 Inspired
by the serendipitous result outlined in eq 2, we decided to
examine the effectiveness of pyrrole formation using recently
popular metal catalysts such as AgOTf or “cationic” gold(I)
complexes.15
Results and Discussion
Our initial results are presented in eq 3 and Table 1. The test
FIGURE 1. Examples of pyrrole containing natural products.
ring is of particular interest to the synthetic organic chemist as
it is present in a large number of alkaloid natural products6 that
can exhibit biological activity7 and structural complexity, as
exemplified by the compounds in Figure 1.8 Many solutions
are available for the synthesis of pyrroles.9 The cyclization of
alkynylimines with 30 mol % of CuI in a triethylamine-
dimethylacetamide mixture at 130 °C generates pyrroles in 50-
93% yields.10 Cyclizations with 5 mol % of a gold(III) species,
NaAuCl4, in ethanol at 40 °C proceed in high yields.11 Platinum-
(II) chloride (20 mol % loading) at 60 °C for 100 h enabled the
cycloisomerization of an alkynyl imine in 77% yield.12 A recent
silver(I) promoted pyrrole synthesis suggested that metal-
promoted hydroamination of an alkyne followed by an intramo-
TABLE 1. Test of Amine Scopea
(6) (a) Tsukamoto, S.; Tane, K.; Ohta, T.; Matsunaga, S.; Fusetani, N.;
van Soest, R. W. M. J. Nat. Prod. 2001, 64, 1576-1578. (b) Seki, M.;
Mori, K. Eur. J. Org. Chem. 2001, 503-506. (c) O’Hagan, D. Nat. Prod.
Rep. 2000, 17, 435-446. (d) El Sayed, K. A.; Hamann, M. T.; Abd El-
Rahman, H. A.; Zaghloul, A. M. J. Nat. Prod. 1998, 61, 848-850. (e)
Plunkett, A. O. Nat. Prod. Rep. 1992, 581-590. (f) Zennie, T. M.; Cassady,
J. M. J. Nat. Prod. 1990, 53, 1611-1614.
(7) (a) Sato, A.; McNulty, L.; Cox, C.; Kim, S.; Scott, A.; Daniell, K.;
Summerville, K.; Price, C.; Hudson, S.; Kiakos, K.; Hartley, J. A.; Asao,
T.; Lee, M. J. Med. Chem. 2005, 48, 3903-3918. (b) Fu¨rstner, A. Angew.
Chem., Int. Ed. 2003, 42, 3582-3603. (c) Jacobi, P. A.; Coutts, L. D.;
Guo, J.; Hauck, S. I.; Leung, S. H. J. Org. Chem. 2000, 65, 205-213.
(8) (a) Schroder, F.; Franke, S.; Francke, W. Tetrahedron 1996, 52,
13539-13546. (b) Wang, Y.-F.; Lu, C.-H.; Lai, G. F.; Cao, J.-X.; Luo, S.
D. Planta Med. 2003, 69, 1066-1068. (c) Seki, M.; Mori, K. Eur. J. Org.
Chem. 2001, 503-506.
entry
amine
method
T (°C)
t (h)
yield (%)b
1
2
3
5a
5a
5a
A
B
C
50
50
50
3
2
12
76
79
87
4
5
5b
5b
A
C
50
50
12
18
66
80
6
7
5c
5c
A
C
50
50
12
18
77
70
8
9
10
5d
5d
5d
A
B
C
80
80
80
24
23
24
13
38
59
11
12
5e
5e
A
C
80
80
24
24
1
27
(9) For some recent syntheses of pyrroles: (a) Wurz, R. P.; Charette, A.
B. Org. Lett. 2005, 7, 2313-2316. (b) Banik, B. K.; Banik, I.; Renteria,
M.; Dasgupta, S. K. Tetrahedron Lett. 2005, 46, 2643-2645. (c) Kamijo,
S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260-
9266. (d) Knight, D. W.; Sharland, C. M. Synlett 2003, 2258-2260. (e)
Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004,
6, 2957-2960. (f) Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003,
68, 7853-7861. (g) Quiclet-Sire, B.; Wendeborn, F.; Zard, S. Z. Chem.
Commun. 2002, 2214-2215. (h) Arcadi, A.; Rossi, E. Tetrahedron 1998,
54, 15253-15272. (i) Arcadi, A.; Rossi, E. Synlett 1997, 667-668. (j) Grigg,
R.; Savic, V. Chem. Commun. 2000, 873-874. (k) Ito, S.; Murashima, T.;
Ono, N. J. Chem. Soc., Perkin 1 1997, 3161-3165. (l) Braun, R. U.; Zeitler,
K.; Mu¨ller, T. J. J. Org. Lett. 2001, 3, 3297-3300. (m) Takaya, H.; Kojima,
S.; Murahashi, S.-I. Org. Lett. 2001, 3, 421-424. (n) Paulus, O.; Alcaraz,
G.; Vaultier, M. Eur. J. Org. Chem. 2002, 2565-2572. (o) Attanasi, O.
A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Santeusanio,
S. J. Org. Chem. 2002, 67, 8178-8181. (p) Demir, A. S.; Akhemedov, I.
M.; Sesenoglu, O¨ . Tetrahedron 2002, 58, 9793-9799. (q) Smith, N. D.;
Huang, D.; Cosford, N. D. P. Org. Lett. 2002, 4, 3537-3539. (r) Ranu, B.
C.; Dey, S. S. Tetrahedron Lett. 2003, 44, 2865-2868. (s) Dhawan, R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468-469. (t) Siriwardana,
A. I.; Kathriarachchi, K. K. A. D. S.; Nakamura, I.; Gridnev, I. D.;
Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 13898-13899. (u) Masquelin,
T.; Obrecht, D. Synthesis 1995, 276-284.
13
14
5f
5f
A
C
80
80
24
24
37
35
15
16
5g
5g
A
C
50
50
16
12
74
68
17
18
5h
5h
A
C
80
80
24
24
41
60
a Reactions were carried out with 1 equiv of 5, 1 equiv of ketone, and
5 mol % of catalyst system. b Isolated yields.
reaction involved the condensation of 5-heptyn-2-one with a
monosubstituted amine derivative under either silver(I) (method
A) or gold(I) catalysis. Importantly, two sets of conditions for
(13) Robinson, R. S.; Dovey, M. C.; Gravestock, D. Tetrahedron Lett.
2004, 45, 6787-6789.
(14) (a) Agarwal, S.; Kno¨lker, H.-J. Org. Biomol. Chem. 2004, 2, 3060-
3062. (b) Kno¨lker, H.-J.; Agarwal, S. Synlett 2004, 1767-1768.
(15) (a) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127,
5802-5803. (b) Yang, C.; He, C. J. Am. Chem. Soc. 2005, 127, 6966-
6967. (c) Li, Z.; Shi, Z.; He. C. J. Organomet. Chem. 2005, 690, 5049-
5054. (d) Shi, Z.; He, C. J. Am. Chem. Soc. 2004, 126, 5964-5965. (e)
Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669-3671. (f) Shi, Z.; He, C. J.
Am. Chem. Soc. 2004, 126, 13596-13597. (g) Zhang, J.; Yang, C.; He, C.
J. Am. Chem. Soc. 2006, 128, 1798-1799. (h) Yang, C.; Reich, N. W.;
Shi, Z.; He, C. Org. Lett. 2005, 7, 4553-4556. (i) Cui, Y.; He, C. Angew.
Chem., Int. Ed. 2004, 43, 4210-4212.
(10) (a) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem.
Soc. 2001, 123, 2074-2075. (b) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V.
Angew. Chem., Int. Ed. 2003, 42, 98-101.
(11) Arcadi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Tetrahedron:
Asymmetry 2001, 12, 2715-2720. (b) Arcadi, A.; Di Giuseppe, S.; Marinelli,
F.; Rossi, E. AdV. Synth. Catal. 2001, 343, 443-446.
(12) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai,
M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681-2684.
4526 J. Org. Chem., Vol. 71, No. 12, 2006