Inorganic Chemistry
ARTICLE
to the weak interaction {M-π (-CH=N-)} between 1 and Cu2þ
/
Technology (AIST), Osaka, Japan for extending use of the
single-crystal X-ray diffraction facility.
Agþ ions. Since, Cu2þ and Agþ ions do not displace Zn2þ from 1,
the added metal ions (Cu2þ/Zn2þ/Agþ) weakly interact with 1.
The addition of a particular metal ion (Cu2þ/Zn2þ/Agþ) domi-
nates over the metal ion present in solution and weakly interacts
with 1 thus exhibiting the fluorescence owing to added metal ion.
As none of the added metal ions interact with 1 through
covalent/coordinate bond, it is possible that the incoming metal
ion may interact with 1 replacing the other, as a result complex 1
mimic between three distinct fluorescence states. Such types of
chemical systems may be applicable to protect the information at
molecular level as it requires correct password entries.10
Although, a few molecular keypad lock systems are available in
literature,10,24 all these are based on organic molecules whereas
the system described in this work is based on a binuclear Zn
complex.25
’ REFERENCES
(1) (a) Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008,
108, 3443–3480. (b) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem.
Rev. 2008, 108, 1517–1549. (c) Kikuchi, K.; Komatsu, K.; Nagano, T.
Curr. Opin. Chem. Biol. 2004, 8, 182–191. (d) Prodi, L.; Bolletta, F.;
Montalti, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, 59–83.
(e) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40.
(f) Desvergne, J. P.; Czarnik, A. W. Chemosensors of Ion and Molecule
Recognition; Kluwer: Dordrecht, The Netherlands, 1997. (g) de Silva,
A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy,
C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566.
(2) (a) Klein, G.; Kaufmann, D.; Sch€urch, S.; Reymond, J.-L. Chem.
Commun. 2001, 561–562. (b) Prodi, L.; Bargossi, C.; Montalti, M.;
Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am.
Chem. Soc. 2000, 122, 6769–677.
’ CONCLUSIONS
(3) (a) Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol.
2008, 4, 168–175. (b) Royzen, M.; Durandin, A.; Young, V. G., Jr.;
Geacintov, N. E.; Canary, J. W. J. Am. Chem. Soc. 2006, 128, 3854–3855.
(c) Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9, 5039–5042.
(d) Ray, D.; Bharadwaj, P. K. Inorg. Chem. 2008, 47, 2252–2254.
(4) (a) Yardim, M. F.; Budinova, T.; Ekinci, E.; Petrov, N.; Razvigorova,
M.; Minkova, V. Chemosphere 2003, 52, 835–841. (b) Løvstad, R. A.
BioMetals 2004, 17, 111. (c) Barceloux, D. G.; Barceloux, D. J. Clin.
Toxicol. 1999, 37, 217. (d) Sarkar, B. In Metal ions in biological systems;
Siegel, H., Siegel, A., Eds.; Marcel Dekker: New York, 1981; Vol. 12,
pp 233 ff. (e) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008,
108, 1517.
(5) (a) Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.;
Park, Y. H. Appl. Environ. Microbiol. 2008, 74, 2171–2178. (b) Silver, S.;
Phung, L. T.; Silver, G. J. Ind. Microbiol. Biotechnol. 2006, 33, 627–634.
(c) Melaiye, A.; Simons, R. S.; Milsted, A.; Pingitore, F.; Wesdemiotis,
C.; Tessier, C. A.; Youngs, W. J. J. Med. Chem. 2004, 47, 973–977.
(d) Mozingo, D. W.; McManus, A. T.; Kim, S. H.; Pruitt, B. A. J. Trauma
1997, 42, 1006–1010. (e) Melaiye, A.; Sun, Z.; Hindi, K.; Milsted, A.;
Ely, D.; Reneker, D. H.; Tessier, C. A.; Youngs, W. J. J. Am. Chem. Soc.
2005, 127, 2285–2291. (f) Butkus, M. A.; Labare, M. P.; Starke, J. A.;
Moon, K.; Talbot, M. Appl. Environ. Microbiol. 2004, 70, 2848–2856.
(g) Petering, H. G. Pharmacol. Ther. A 1976, 1, 127–130. (h) Russell,
A. D.; Hugo, W. B. Prog. Med. Chem. 1994, 31, 351–370.
(6) (a) Amendola, V.; Fabbrizzi, L.; Foti, F.; Licchelli, M.; Mangano,
C.; Pallavicini, P.; Poggi, A.; Sacchi, D.; Taglietti, A. Coord. Chem. Rev.
2006, 250, 273–273. (b) Kramer, R. Angew. Chem., Int. Ed. 1998,
37, 772–773. (c) Joseph, R.; Ramanujam, B.; Acharya, A.; Rao, C. P.
J. Org. Chem. 2009, 74, 8181–8190.
(7) (a) Sano, Y.; Nisho, Y.; Hamada, H.; Takahashi, T.; Usuki;
Shibata, K. J. Mater. Chem. 2000, 10, 157–161. (b) Natrajan, L. S.;
Timmins, P. L.; Lunn, M.; Heath, S. L. Inorg. Chem. 2007,
46, 10877–10886, and references therein.
(8) de Silva, S. A.; Zavaleta, A.; Allam, D. E. B. O.; Isidor, E. V.;
Kashimura, N.; Percarpio., J. M. Tetrahedron Lett. 1997, 38, 2237–2240.
(9) (a) de Silva, A. P.; James, D. Y.; McKinney, B. O. F.; Pears, D. A.;
Weir, S. M. Nat. Mater. 2006, 5, 787–790. (b) Rinaudo, K.; Bleris, L.;
Maddamsetti, R.; Subramanian, S.; Weiss, R.; Beneson, Y. Nat. Biotech-
nol. 2007, 25, 795–801.
(10) (a) Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. J. Am.
Chem. Soc. 2007, 129, 347–354. (b) Guo, Z.; Zhu, W.; Shen, L.; Tian, H.
Angew. Chem., Int. Ed. 2007, 46, 5549–5553.
In summary, through this work we have described the synth-
esis, spectral and structural characterization of binuclear zinc(II)
and copper(II) complexes based on a new salen type ligand N,N0-
bis(2-hydroxybenzilidene)-2,4,6-trimethylbenzene-1,3-diamine.
The zinc complex displays strong fluorescence, which is measur-
able even at nanomolar concentrations. It exhibits “turn-off” and
“turn-on” in the presence of Cu2þ and Agþ ions in aqueous
environment at neutral pH. The “Off-On” processes are rever-
sible, and it has been established that they arises from weak
interaction between Cu2þ/Agþ and -CH=N- unit. The observed
fluorescence quenching of 1 in the presence of paramagnetic
Cu2þ has been attributed to interaction of Cu2þ with the -CH=N-
unit, subsequently metal to ligand charge transfer (MLCT) to the
chromofore of 1. On the other hand, fluorescence enhancement in
the presence of Agþ possibly arises from ligand to metal charge
transfer (LMCT) between 1 and Agþ (d10). Moreover, 1 can be
applied as a molecular keypad lock system which follows correct
chemical input order CZA (Cu2þfZn2þfAgþ) because of rever-
sible “switch-off” and “switch-on” signaling in the presence of
Cu2þ and Agþ ions, respectively. The present approach can be
further extended to yield a new class of chemosensors with potential
applications.
’ ASSOCIATED CONTENT
S
Supporting Information. Contains characterization
b
data, UVꢀvis and emission spectra related to this work, and
crystal data in CIF format (CCDC-743409, 743411, 743410) for
H2L, complex 1 and 2. This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: dspbhu@bhu.ac.in. Phone: þ 91 542 6702480. Fax:
þ 91 542 2368174.
(11) Perrin, D. D.; Armango, W. L. F.; Perrin, D. R.; Purification of
Laboratory Chemicals; Pergamon: Oxford, U.K. 1986.
(12) (a) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal
Structure Refinement; G€ottingen University: G€ottingen, Germany, 1997.
(b) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure
Solution; G€ottingen University: G€ottingen, Germany, 1997.
’ ACKNOWLEDGMENT
Thanks are due to the Department of Science and Technol-
ogy, New Delhi, India for financial assistance through the
Scheme SR/S1/IC-15/2006. The authors are also grateful
to the National Institute of Advanced Industrial Science and
3196
dx.doi.org/10.1021/ic1018086 |Inorg. Chem. 2011, 50, 3189–3197