Inorganic Chemistry
Article
(14) See, Y. Y.; Herrmann, A. T.; Aihara, Y.; Baran, P. S. Scalable
C−H Oxidation with Copper: Synthesis of Polyoxypregnanes. J. Am.
Chem. Soc. 2015, 137, 13776−13779.
(15) Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D. R.;
Myers, A. G. A Convergent Enantioselective Route to Structurally
Diverse 6-Deoxytetracycline Antibiotics. Science 2005, 308, 395−398.
(16) Miller, J. A. Metal-promoted Fries rearrangement. J. Org. Chem.
1987, 52, 322−323.
(17) Choy, P. Y.; Kwong, F. Y. Palladium-Catalyzed ortho-CH-Bond
Oxygenation of Aromatic Ketones. Org. Lett. 2013, 15, 270−273.
(18) Shan, G.; Yang, X.; Ma, L.; Rao, Y. Pd-Catalyzed C-H
Oxygenation with TFA/TFAA: Expedient Access to Oxygen-
Containing Heterocycles and Late-Stage Drug Modification. Angew.
Chem., Int. Ed. 2012, 51, 13070−13074.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
(19) Kim, K.; Choe, H.; Jeong, Y.; Lee, J. H.; Hong, S. Ru(II)-
Catalyzed Site-Selective Hydroxylation of Flavone and Chromone
Derivatives: The Importance of the 5-Hydroxyl Motif for the
Inhibition of Aurora Kinases. Org. Lett. 2015, 17, 2550−2553.
(20) Tezuka, N.; Shimojo, K.; Hirano, K.; Komagawa, S.; Yoshida,
K.; Wang, C.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M.
Direct Hydroxylation and Amination of Arenes via Deprotonative
Cupration. J. Am. Chem. Soc. 2016, 138, 9166−9171.
(21) Elwell, C. E.; Gagnon, N. L.; Neisen, B. D.; Dhar, D.; Spaeth, A.
D.; Yee, G. M.; Tolman, W. B. Copper−Oxygen Complexes
Revisited: Structures, Spectroscopy, and Reactivity. Chem. Rev.
2017, 117, 2059−2107.
(22) Citek, C.; Herres-Pawlis, S.; Stack, T. D. P. Low Temperature
Syntheses and Reactivity of Cu2O2 Active-Site Models. Acc. Chem. Res.
2015, 48, 2424−2433.
ACKNOWLEDGMENTS
■
The authors thank the Robert A. Welch Foundation, the
National Institutes of Health (Grant R15GM128078 to I.G.-
B.), MINECO (CTQ2017-87392-P), UdG (IFUdG2016
fellowship to L.D.), and FEDER (UNGI10-4E-801 to M.S.)
for financial support, CSUC for extensive computer time, and
SMU for financial support and facilities. The authors thank Dr.
Vogel and Dr. Wise (SMU) for help with EPR and Dr. Baran
for providing ligand systems L20 and L21 and for helpful
advice.
REFERENCES
■
(23) Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I. Copper-
Promoted Functionalization of Organic Molecules: from Biologically
Relevant Cu/O2 Model Systems to Organometallic Transformations.
Chem. Rev. 2019, 119, 2954−3031.
(1) Hartwig, J. F. Evolution of C−H Bond Functionalization from
Methane to Methodology. J. Am. Chem. Soc. 2016, 138, 2−24.
(2) Stavropoulos, P.; Çelenligil-Çetin, R.; Tapper, A. E. The Gif
Paradox. Acc. Chem. Res. 2001, 34, 745−752.
(24) Quist, D. A.; Diaz, D. E.; Liu, J. J.; Karlin, K. D. Activation of
dioxygen by copper metalloproteins and insights from model
complexes. JBIC, J. Biol. Inorg. Chem. 2017, 22, 253−288.
(3) Costas, M. Selective C−H oxidation catalyzed by metal-
loporphyrins. Coord. Chem. Rev. 2011, 255, 2912−2932.
(4) Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.;
Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.;
Hadt, R. G.; Tian, L. Copper Active Sites in Biology. Chem. Rev. 2014,
114, 3659−3853.
(25) Maiti, D.; Lee, D.-H.; Gaoutchenova, K.; Wurtele, C.;
̈
Holthausen, M. C.; Narducci Sarjeant, A. A.; Sundermeyer, J.;
Schindler, S.; Karlin, K. D. Reactions of a Copper(II) Superoxo
Complex Lead to C−H and O−H Substrate Oxygenation: Modeling
Copper-Monooxygenase C−H Hydroxylation. Angew. Chem., Int. Ed.
2008, 47, 82−85.
(5) Oloo, W. N.; Que, L. Bioinspired Nonheme Iron Catalysts for
C−H and CC Bond Oxidation: Insights into the Nature of the
Metal-Based Oxidants. Acc. Chem. Res. 2015, 48, 2612−2621.
(26) Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.;
Takui, T.; Itoh, S. Mononuclear Copper(II)−Superoxo Complexes
that Mimic the Structure and Reactivity of the Active Centers of PHM
and DbM. J. Am. Chem. Soc. 2009, 131, 2788−2789.
(27) Lee, Y.; Lee, D. H.; Narducci Sarjeant, A. A.; Zakharov, L. N.;
Rheingold, A. L.; Karlin, K. D. Thioether Sulfur Oxygenation from O2
or H2O2 Reactivity of Copper Complexes with Tridentate N2Sthioether
Ligands. Inorg. Chem. 2006, 45, 10098−10107.
(28) Kim, S.; Ginsbach, J. W.; Lee, J. Y.; Peterson, R. L.; Liu, J. J.;
Siegler, M. A.; Sarjeant, A. A.; Solomon, E. I.; Karlin, K. D. Amine
Oxidative N-Dealkylation via Cupric Hydroperoxide Cu-OOH
Homolytic Cleavage Followed by Site-Specific Fenton Chemistry. J.
Am. Chem. Soc. 2015, 137, 2867−2874.
(29) Salvador, T. K.; Arnett, C. H.; Kundu, S.; Sapiezynski, N. G.;
Bertke, J. A.; Raghibi Boroujeni, M.; Warren, T. H. Copper Catalyzed
sp3 C−H Etherification with Acyl Protected Phenols. J. Am. Chem.
Soc. 2016, 138, 16580−16583.
(30) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson,
K. O.; Solomon, E. I.; Stack, T. D. P. Tyrosinase Reactivity in a Model
Complex: An Alternative Hydroxylation Mechanism. Science 2005,
308, 1890−1892.
(31) Itoh, S.; Kumei, H.; Taki, M.; Nagatomo, S.; Kitagawa, T.;
Fukuzumi, S. Oxygenation of phenols to catechols by a (μ-η2:η2-
peroxo)dicopper(II) complex: mechanistic insight into the phenolase
activity of tyrosinase. J. Am. Chem. Soc. 2001, 123, 6708−6709.
(32) Garcia-Bosch, I.; Company, A.; Frisch, J. R.; Torrent-Sucarrat,
́
(6) Gomez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.;
Polo, A.; Sala, X.; Ribas, X.; Costas, M. Stereospecific C−H Oxidation
with H2O2 Catalyzed by a Chemically Robust Site-Isolated Iron
Catalyst. Angew. Chem., Int. Ed. 2009, 48, 5720−5723.
(7) White, M. C. Adding Aliphatic C−H Bond Oxidations to
Synthesis. Science 2012, 335, 807−809.
(8) Garcia-Bosch, I.; Siegler, M. A. Copper-Catalyzed Oxidation of
Alkanes with H2O2 under a Fenton-like Regime. Angew. Chem., Int.
Ed. 2016, 55, 12873−12876.
(9) Rousseau, G.; Breit, B. Removable Directing Groups in Organic
Synthesis and Catalysis. Angew. Chem., Int. Ed. 2011, 50, 2450−2494.
(10) Trammell, R.; See, Y. Y.; Herrmann, A. T.; Xie, N.; Díaz, D. E.;
Siegler, M. A.; Baran, P. S.; Garcia-Bosch, I. Decoding the Mechanism
of Intramolecular Cu-Directed Hydroxylation of sp3 C−H Bonds. J.
Org. Chem. 2017, 82, 7887−7904.
(11) Schonecker, B.; Zheldakova, T.; Liu, Y.; Kotteritzsch, M.;
Gunther, W.; Gorls, H. Biomimetic hydroxylation of nonactivated
CH2 groups with copper complexes and molecular oxygen. Angew.
Chem., Int. Ed. 2003, 42, 3240−3244.
(12) Schonecker, B.; Zheldakova, T.; Lange, C.; Gunther, W.; Gorls,
H.; Bohl, M. Intramolecular gamma-hydroxylations of nonactivated
C-H bonds with copper complexes and molecular oxygen. Chem. -
Eur. J. 2004, 10, 6029−6042.
(13) Schonecker, B.; Lange, C.; Zheldakova, T.; Gunther, W.; Gorls,
H.; Vaughan, G. Copper-mediated regio- and stereoselective 12 beta-
hydroxylation of steroids with molecular oxygen and an unexpected
12 beta-chlorination. Tetrahedron 2005, 61, 103−114.
M.; Cardellach, M.; Gamba, I.; Gu
̈
ell, M.; Casella, L.; Que, L., Jr.;
H
Inorg. Chem. XXXX, XXX, XXX−XXX