COMMUNICATIONS
[3] A. Deiters, D. Hoppe, Angew. Chem. 1999, 111, 529 ± 532; Angew.
Chem. Int. Ed. 1999, 38, 546 ± 548.
5.7 Hz), 5.67 ± 5.81 (m, 3H, CH, CH, CH), 7.32 ± 7.70 (m, 10H,
CH(phenyl)). After cleavage of the TBDPS group, the enantiomeric
ratio of (1R,5S)-10 was determined as described in reference [7].
[16] a) X-ray crystal structure analysis of (1R,5R)-10: C16H27NO3, Mr
281.39, colorless crystal, 0.40 Â 0.25 Â 0.15 mm, a 26.159(5), b
[4] P. Lennon, M. Rosenblum, J. Am. Chem. Soc. 1983, 105, 1233 ± 1241.
[5] Reviews: a) D. Hoppe, T. Hense, Angew. Chem. 1997, 109, 2376 ± 2410;
Angew. Chem. Int. Ed. Engl. 1997, 36, 2282 ± 2316; b) P. Beak, A. Basu,
D. J. Gallagher, Y. S. Park, S. Thayumanavan, Acc. Chem. Res. 1996,
29, 552 ± 560.
[6] If the reaction is carried out at À788C, 4 is obtained in 66% yield and
86% ee. By using the achiral base nBuLi/TMEDA in Et2O at À788C,
rac-4 is yielded in 76%.
10.884(2), c 12.918(3) , b 113.71(2)8, V 3367.5(12) 3, 1calcd
1.110g cmÀ3, m 6.04 cmÀ1, absorption correction with y-scan data
(0.794 ꢀ Tꢀ 0.915), Z 8, monoclinic, space group C2 (No. 5), l
1.54178 , T 223 K, w/2q scans, 3697 reflections collected (Æh, k,
Æl), [(sinq)/l] 0.62 À1, 3611 independent (Rint 0.077) and 3159
[7] Compound 4: Mp 728C; [a]2D0 14.8 (c 0.59, CHCl3; 88% ee);
1H NMR (400 MHz, CDCl3): d 1.34 ± 1.56 (m, 14H, CH2,
CH3(Cby)), 1.85 ± 2.03 (m, 4H, CH2), 2.22 and 2.43 (bothm, each
with1H, CH 2), 3.70 and 3.71 (s, 2H, CH2(Cby)), 5.10 (dd, 1H, CHO,
3J 7.8, 7.8 Hz), 5.38 (dt, 1H, CH, 3J 9.6, 9.6 Hz), 5.47 (dt, 1H, CH,
3J 5.8, 10.1 Hz), 5.62 (m, 1H, CH), 5.79 (dt, 1H, CH, 3J 10.1,
observed reflections [I ꢁ 2s(I)], 372 refined parameters, R 0.044,
À3
wR2 0.119, max./min. residual electron density 0.24/ À 0.17 e
,
Flack Parameter 0.3(2), the asymmetric unit contains two independ-
ent, nearly identical molecules, hydrogens were calculated and refined
as riding atoms; b) The data sets were collected with Nonius CAD4
and Nonius KappaCCD diffractometers equipped witha Nonius
FR590 sealed tube generator or a Nonius FR591 rotating anode
generator. The following programs were used: For data collection,
EXPRESS (Nonius B.V., 1994) and COLLECT (Nonius B.V., 1998);
for data reduction, MolEN (K. Fair, Enraf ± Nonius B.V., 1990) and
Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276,
307 ± 326); for absorption corrections for CCD data, SORTAV (R. H.
Blessing, Acta Crystallogr. Sect. A 1995, 51, 33 ± 37; R. H. Blessing, J.
Appl. Crystallogr. 1997, 30, 421 ± 426); for structure solution,
SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46,
467 ± 473); for structure refinement, SHELXL-97 (G. M. Sheldrick,
University of Göttingen, 1997); for graphics, SCHAKAL (E. Keller,
University of Freiburg, 1997). Crystallographic data (excluding
structure factors) for the structures reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre as
supplementary publication no. CCDC-139019 and -139020. Copies
of the data can be obtained free of charge on application to CCDC, 12
Union Road, Cambridge CB21EZ, UK (fax: (44)1223-336-033;
e-mail: deposit@ccdc.cam.ac.uk).
8.5 Hz). The enantiomeric ratio of
4 was determined by gas
chromatography on a chiral stationary phase (Beta-Dex 120, Supelco,
USA).
[8] Compound 5: [a]2D0 10.3 (c 1.27, CHCl3; 87% ee); 1H NMR
(300 MHz, CDCl3): d 0.05 (s, 9H, Si(CH3)3), 1.30 ± 1.51 (m, 14H,
CH2, CH3(Cby)), 1.96 ± 2.30 (m, 4H, CH2), 3.69 (s, 2H, CH2(Cby)),
4.07 (dd, 2H, CH2Cl, 4J 1.8, 3J 5.1 Hz), 5.35 ± 5.42 (m, 3H, CH,
CHSi), 5.58 ± 5.62 (m, 2H, CH). The enantiomeric ratio of the silane 5
was determined by 1H NMR shift experiments in the presence of
[Eu(hfc)3] (hfc 3-(heptafluoropropylhydroxymethylene)-d-campho-
rate). After hydrogenation of the double bonds and hydrogenolytic
cleavage of the chlorine atom, the corresponding 1-trimethylsilylnonyl
carbamate was obtained.[3] Its enantiomer was synthesized by the
sBuLi/(À)-sparteine method.[5a] A correlation of the optical rotations
assigned the R configuration for ()-5.
[9] Stereoinversion in the silylation of allyllithium-(À)-sparteine com-
plexes: K. Behrens, R. Fröhlich, O. Meyer, D. Hoppe, Eur. J. Org.
Chem. 1998, 2397 ± 2403; H. Paulsen, C. Graeve, D. Hoppe, Synthesis
1996, 141 ± 144.
[10] a) H. Yamamoto et al. reported intermolecular a,a'-allyl couplings by
the use of allylbarium reagents.[10b] However, an intramolecular
coupling reaction was unknown: A. Yanagisawa, K. Yasue, H.
Yamamoto, Synlett 1996, 842 ± 844; A. Yanagisawa, H. Hibino, S.
Habaue, Y. Hisada, H. Yamamoto, J. Org. Chem. 1992, 57, 6386 ± 6387;
b) A. Yanagisawa, H. Yamamoto in Active Metals (Ed.: A. Fürstner),
VCH, Weinheim, 1995, pp. 61 ± 84.
[17] By heating 4 up to 2208C, a stereospecific Cope rearrangement takes
place;[22] Cope rearrangement of (Z,Z)-cyclonona-1,5-diene: E. Vogel,
Â
W. Grimme, E. Dinne, Angew. Chem. 1963, 75, 1103.
[18] a) Review of anionic oxy-Cope rearrangements: L. A. Paquette,
Tetrahedron 1997, 53, 13971 ± 14020; b) anionic oxy-Cope rearrange-
ment of rac-6: L. A. Paquette, G. D. Crouse, A. K. Sharma, J. Am.
Chem. Soc. 1982, 104, 4411 ± 4423. The enantiomeric ratio of 13 was
determined as described in reference [7].
[11] Presumably, the topology of the transition state A is influenced by
p ± p* interactions of the allylic moieties by precoordination and,
therefore, favor the entropic term of the cyclization. In principle a
g,g'-coupling between C-3 and C-7 is also possible and would lead to
the cis configured five-membered ring. However, this would cause an
increase of transannular and diaxial interactions of the side chains
with the ring system; for this reason, the formation of a nine-
membered ring takes place.
[19] a) S.-Y. Wei, K. Tomooka, T. Nakai, Tetrahedron 1993, 49, 1025 ± 1042;
b) L. A. Paquette, G. D. Maynard, Angew. Chem. 1991, 103, 1392 ±
1394; Angew. Chem. Int. Ed. Eng. 1991, 30, 1368 ± 1370; c) in anionic
oxy-Cope rearrangements the oxido group prefers an equatorial
position: L. A. Paquette, G. Maynard, J. Am. Chem. Soc. 1992, 114,
5018 ± 5027.
[20] K. Tomooka, N. Komine, T. Sasaki, H. Shimizu, T. Nakai, Tetrahedron
Lett. 1998, 39, 9715 ± 9718.
[12] F. Hintze, D. Hoppe, Synthesis 1992, 1216 ± 1218.
[21] Review of homoenolate chemistry: D. Hoppe, Angew. Chem. 1984, 96,
930 ± 946; Angew. Chem. Int. Ed. Engl. 1984, 23, 932 ± 948.
[22] A. Deiters, D. Hoppe, unpublished results.
[23] All new compounds were analytically pure (error in C,H,N elemental
analyses Æ0.4).
[13] X-ray crystal structure analysis of 7: C18H23NO2, Mr 285.37, light
yellow crystal, 0.20 Â 0.10 Â 0.05 mm, a 23.258(1), c 5.106(1) ,
g 1208, V 2392.0(5) 3, 1calcd 1.189 gcmÀ3, m 0.77 cmÀ1, absorp-
tion correction withSORTAV (0.985 ꢀ Tꢀ 0.996), Z 6, trigonal,
space group P31 (No. 144), l 0.71073 , T 198 K, w and f scans,
20958 reflections collected (Æh, Æk, Æl), [(sinq)/l] 0.65 À1, 7097
independent (Rint 0.056) and 4457 observed reflections [I ꢁ 2s(I)],
387 refined parameters, R 0.066, wR2 0.131, max./min. residual
electron density 0.42/ À 0.25 eÀ3, Flack parameter À0.1(14), the
asymmetric unit contains two independent, nearly identical molecules,
hydrogens were calculated and refined as riding atoms.[16b]
[14] a) For 2-alkynyl carbamates, see: S. Dreller, M. Dyrbusch, D. Hoppe,
Synlett 1991, 397 ± 400; b) For a similar reaction sequence, see: S.
Hatakeyama, H. Irie, T. Shintani, Y. Noguchi, H. Yamada, M.
Nishizawa, Tetrahedron 1994, 50, 13369 ± 13376.
[15] Compound (1R,5S)-9: [a]2D0 À37.7 (c 0.43, CHCl3, 100% ee);
1H NMR (300 MHz, CDCl3): d 1.07 (s, 9H, tBu), 1.22 (d, 12H,
CH3(Cb), 3J 6.9 Hz), 1.93 ± 2.00 (m, 1H, CH2), 2.11 (dd, 2H, CH2,
3J 6.9, 3.6 Hz), 2.19 ± 2.38 (m, 2H, CH2, CH2), 2.53 (ddd, 1H, CH2,
2
3J 8.7, 9.0, J 12.9 Hz), 3.80 ± 4.03 (m, 3H, CH(Cb), CHOSi), 5.03
(dd, 1H, CHOCb, 3J 6.0, 6.9 Hz), 5.35 (dt, 1H, CH, 3J 10.6,
Angew. Chem. Int. Ed. 2000, 39, No. 12
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0570-0833/00/3912-2107 $ 17.50+.50/0
2107