6330
D. L. da Silva et al. / Tetrahedron Letters 52 (2011) 6328–6330
the use of p-sulfonic acid calix[4]arene 7 as an organocatalyst. A
Table 3 (continued)
broad variety of aromatic aldehydes can be employed. The meth-
odology here is environmentally friendly since it does not employ
metal-based catalyst. This is, in turn, very attractive for safely
obtaining 3,4-dihydropyrimidin-2-(1H)-ones/-thiones of pharma-
cological interest. To the best of our knowledge, this is the first
report on the application of calixarenes as catalysts in multicom-
ponent Biginelli reactions.
Product
Aldehydes (2a–s)
X
S
Yield (%)
72
CHO
4p
4q
4r
OCH3
OH
CHO
S
S
74
78
Acknowledgments
OCH3
CHO
The authors are grateful to Dr. Luzia V. Modolo for critical read-
ing of this manuscript. This work was funded by FAPEMIG, CAPES,
and CNPq. D.L.S. and A.D.F. are supported by CNPq scholarship and
research fellowship, respectively.
SCH3
CHO
Supplementary data
4s
S
64
O
O
Supplementary data associated with this article can be found, in
Reagents and conditions20: aldehyde/ethyl acetoacetate/urea/thiourea (molar
a
ratio = 1:1.5:1.5).
References and notes
1. Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
2. Amarante, G. W.; Coelho, F. Quim. Nova 2009, 32, 469.
3. Biginelli, P. Grazz. Chim. Ital. 1893, 23, 360.
100
80
60
40
20
0
4. Kappe, C. O. QSAR Comb. Sci. 2003, 22, 630.
5. (a) Kolosov, M. A.; Orlov, V. D.; Beloborodov, D. A.; Dotsenko, V. V. Mol. Divers.
2009, 13, 5; (b) Lu, J.; Bai, Y. Synthesis 2002, 466; (c) Varala, R.; Mujahid, A. M.;
Adapa, S. P. Synlett 2003, 67; (d) Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.;
Canto, K. F. S.; Montes D’Oca, G. V.; Godói, M. N. J. Braz. Chem. Soc. 2004, 15, 165;
(e) Ranu, B. C.; Hajra, A.; Jana, U. J. J. Org. Chem. 2000, 65, 6270; (f) Kumar, K. A.;
Kasthuraiah, M.; Reddy, C. S.; Reddy, C. D. Tetrahedron Lett. 2001, 42, 7873; (g)
Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Tetrahedron Lett. 2003, 44, 3305; (h)
Pandiarajan, S. C. K. Tetrahedron Lett. 2009, 50, 2222.
6. (a) Li, M.; Guo, W. S.; Wen, L. R.; Li, Y. F.; Yang, H. Z. J. Mol. Catal. A: Chem. 2006,
258, 133; (b) Gholap, A. R.; Venkatesan, K.; Lahoti, T. D. R. J.; Srinivasan, K. V.
Green Chem. 2004, 6, 147.
7. Mirza-Aghayan, M.; Bolourtchian, M.; Hosseini, M. Synth. Commun. 2004, 34,
3335.
8. Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49.
9. Kumar, A.; Maurya, R. A. Tetrahedron Lett. 2007, 48, 4569.
10. Dondoni, A.; Massi, A. Tetrahedron Lett. 2001, 42, 7975.
11. Rani, V. R.; Srinivas, N.; Kishan, M. R.; Kulkarni, S. J.; Raghavan, K. V. Green
Chem. 2001, 3, 305.
12. Sharma, S. D.; Gogoi, P.; Konwar, D. Green Chem. 2007, 9, 153.
13. (a) Jain, S. L.; Singhal, S.; Sain, B. Green Chem. 2007, 9, 740; (b) Verma, S.; Jain, S.
L.; Sain, B. Tetrahedron Lett. 2010, 51, 6897.
First
Second
Third
Run
Fourth
Fifth
Figure 1. Reuse capacity of calixarene 7 in Biginelli reactions.
14. (a) Jin, T.; Zhang, S.; Li, T. Synth. Commun. 2002, 32, 1847; (b) Wang, Y.; Yang,
H.; Yu, J.; Miao, Z.; Chen, R. Adv. Synth. Catal. 2009, 351, 3057; (c) Xin, J.; Chang,
L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. Chem. Eur. J. 2008, 14, 3177; (d) Chen, X.
H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. J. Am. Chem. Soc. 2006, 128, 14802; (e)
Yu, Y.; Liu, D.; Liu, C.; Luo, G. Bioorg. Med. Chem. Lett. 2007, 17, 3508.
15. Homden, D. M.; Redshaw, C. Chem. Rev. 2008, 108, 5086.
16. (a) Bozkurt, S.; Durmaz, M.; Yilmaz, M.; Sirit, A. Tetrahedron: Asymmetry 2008,
19, 618; (b) Xu, Z. X.; Li, G. K.; Chen, C. F.; Huang, Z. T. Tetrahedron 2008, 64,
8668; (c) Shimizu, S.; Shirakawa, S.; Susuki, T.; Sasaki, Y. Tetrahedron 2001, 57,
6169; (d) Shimizu, S.; Kito, K.; Sasaki, Y.; Hirai, C. Chem. Commun. 1997, 1629.
17. Shimizu, S.; Shimada, N.; Sasaki, Y. Green Chem. 2006, 8, 608.
18. Liu, Y. L.; Liu, L.; Lin, Y. W.; Han, Y. C.; Wang, D.; Chen, Y. J. Green Chem. 2008,
10, 635.
19. The calixarenes 5–10 were synthesized by following classical procedures
described in: (a) Gutsche, C. D.; Iqbal, M. Org. Synth. 1989, 68, 234; (b) Casnati,
A.; Ca, N. D.; Sansone, F.; Ugozzoli, F.; Ungaro, R. Tetrahedron 2004, 60, 7869; (c)
Shinkai, S.; Araki, K.; Tsubaki, T.; Some, T.; Manabe, O. J. Chem. Soc., Perkin
Trans. 1987, 2297.
20. General procedure for the synthesis of DHPMs: Aldehydes (3 mmol),
ethylacetoacetate (4.5 mmol), and urea or thiourea (4.5 mmol) were
dissolved in 3 mL of ethanol containing a calixarene (0.15–0.5 mol %). The
mixture was heated under reflux and stirred for 8 h. Reactions were monitored
by TLC. The mixtures were concentrated under vacuum, following the addition
of few drops of cold water to precipitate the product. All products were
characterized by NMR (1H, 13C), melting point and elemental analyses
(Supplementary data).
1,4-dioxane. Surprisingly, acetonitrile, a solvent commonly used in
Biginelli reactions, provided poor yields (Table 2, entry 4). Tetrahy-
drofuran and hexane were not suitable solvents (Table 2).
After pursuing the best solvent, we evaluated the scope of
calixarene 7-catalyzed Biginelli reaction by using a variety of alde-
hydes. Aromatic aldehydes bearing electron-donating or electron-
withdrawing groups were employed in Biginelli reactions and the
expected products were obtained in good yields (Table 3). Non-
aromatic aldehydes, however, were less reactive, affording moder-
ate yields (Table 3, products 4m and 4n). Both urea and thiourea
were suitable substrates as attested by the yields of corresponding
formed DHPMs (Table 3).
We also checked whether or not calixarene 7 could be reused in
such reactions (Fig. 1). Calixarene 7 was then recovered from the
reaction medium through liquid–liquid extraction with water.
After drying, the residue was used in successive reactions. Calixa-
rene 7 was found to be efficient in reactions containing ethyl ace-
toacetate (1), 4-hydroxybenzaldehyde (2a), and urea (3a) even
after five cycles of use (Fig. 1).
21. (a) Scharff, J. P.; Mahjouli, M.; Perrin, R. New J. Chem. 1991, 15, 883; (b)
Matsumiya, H.; Terazono, Y.; Iki, N.; Miyano, S. J. Chem. Soc., Perkin Trans. 2
2002, 1166.
In conclusion, an efficient procedure for the synthesis of 3,4-
dihydropyrimidin-2(1H)-ones/-thiones was developed based on