Journal of the American Chemical Society
Article
(6) Zhao, Q.; Lam, Y.; Kheirabadi, M.; Xu, C.; Houk, K. N.;
Schafmeister, C. E. J. Org. Chem. 2012, 77, 4784−4792.
(7) Miller, S. J. Acc. Chem. Res. 2004, 37, 601−610.
(8) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713−5743.
(9) Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.;
Jacobsen, E. N. Science 2017, 355, 162−166.
to short, isolated secondary structures as scaffolds for reactive
group organization (six or seven residues). In contrast, all
known enzyme active sites are embedded within tertiary
structures. This distinction is significant, because concave
active sites allow control over substrate solvation,42,43 but an
active site created along the side of a single helix is solvent-
exposed. Noteworthy progress in de novo enzyme design has
been reported, but these efforts have not yet achieved the rate
enhancements manifested by proficient enzymes.44 The
favorable reactivity we observe for an aldol-based cyclization
with the optimal foldamer suggests that even rudimentary
catalysts involving an isolated secondary structure might have
facilitated the maturation of prebiotic reaction networks.
Enzymes typically contain hundreds of α-amino acid
residues, which are necessary to generate globular folds with
enclosed active sites. It is unlikely, however, that such long
polypeptides existed in the prebiotic period. We therefore
speculate that exploring the capabilities of isolated unnatural
secondary structures as scaffolds for bifunctional catalysis
represents a first step, inspired by prebiotic hypotheses
regarding the origins of enzymes,45 toward development of
larger foldamers that adopt discrete tertiary structures and
approach enzyme-like reactivities.
(10) DiRocco, D. A.; Ji, Y.; Sherer, E. C.; Klapars, A.; Reibarkh, M.;
Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.;
Brunskill, A.; Ruck, R. T.; Campeau, L.; Davies, I. W. Science 2017,
356, 426−430.
(11) Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem., Int.
Ed. 2008, 47, 1871−1874.
(12) Liu, L.; Cotelle, Y.; Avestro, A.; Sakai, N.; Matile, S. J. Am.
Chem. Soc. 2016, 138, 7876−7879.
(13) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173−180.
(14) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. Rev. 2001, 101, 3893−4012.
(15) Guichard, G.; Huc, I. Chem. Commun. 2011, 47, 5933−5941.
̈
(16) Erkkila, A.; Pihko, P. M. Eur. J. Org. Chem. 2007, 2007, 4205−
4216.
(17) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001,
101, 3219−3232.
(18) Fernandes, C.; Faure, S.; Pereira, E.; Thery, V.; Declerck, V.;
Guillot, R.; Aitken, D. J. Org. Lett. 2010, 12, 3606−3609.
(19) Winkler, J. D.; Piatnitski, E. L.; Mehlmann, J.; Kasparec, J.;
Axelsen, P. H. Angew. Chem., Int. Ed. 2001, 40, 743−745.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
(20) Martinek, T. A.; Fulop, F. Chem. Soc. Rev. 2012, 41, 687−702.
̈
̈
■
(21) Appella, D. H.; Christianson, L. A.; Klein, D.; Powell, D. R.;
Huang, X.; Barchi, J. J.; Gellman, S. H. Nature 1997, 387, 381−384.
(22) Schmitt, M. A.; Choi, S. H.; Guzei, I. A.; Gellman, S. H. J. Am.
Chem. Soc. 2006, 128, 4538−4539.
S
Experimental procedures, initial rate plots, circular
dichroism, calibration curves, UPLC spectra, and
(23) Choi, S. H.; Guzei, I. A.; Spencer, L.; Gellman, S. H. J. Am.
Chem. Soc. 2008, 130, 6544−6550.
(24) Choi, S. H.; Guzei, I. A.; Spencer, L.; Gellman, S. H. J. Am.
Chem. Soc. 2008, 130, 6544−6550.
(25) Johnson, L. M.; Gellman, S. H. Methods Enzymol. 2013, 523,
407−429.
AUTHOR INFORMATION
Corresponding Author
■
̈
(26) Erkkila, A.; Pihko, P. M. J. Org. Chem. 2006, 71, 2538−2541.
(27) Price, J. L.; Hadley, E. B.; Steinkruger, J. D.; Gellman, S. H.
Angew. Chem., Int. Ed. 2010, 49, 368−371.
ORCID
(28) Miller, S. A.; Bobbitt, J. A.; Leadbeater, N. E. Org. Biomol.
Chem. 2017, 15, 2817−2822.
(29) Alford, J. S.; Abascal, N. C.; Shugrue, C. R.; Colvin, S. M.;
Romney, D. K.; Miller, S. J. ACS Cent. Sci. 2016, 2, 733.
(30) Giuliano, M. W.; Miller, S. J. Top. Curr. Chem. 2015, 372, 157.
(31) Metrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.;
Hurtley, A. E.; Miller, S. J. J. Am. Chem. Soc. 2017, 139, 492−516.
(32) Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139,
15356−15362.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported in part by the U.S. National
Science Foundation (CHE-1565810). Additional support was
provided by the Office of the Vice Chancellor for Research and
Graduate Education at the University of Wisconsin-Madison
with funding from the Wisconsin Alumni Research Founda-
tion.
(33) Coffey, P. L.; Drauz, K. H.; Roberts, S. M.; Skidmore, J.; Smith,
J. A. Chem. Commun. 2001, 2330−2331.
(34) Maayan, G.; Ward, M. D.; Kirshenbaum, K. Proc. Natl. Acad.
Sci. U. S. A. 2009, 106, 13679−13684.
̈
(35) Muller, M. M.; Windsor, M. A.; Pomerantz, W. C.; Gellman, S.
H.; Hilvert, D. Angew. Chem., Int. Ed. 2009, 48, 922−925.
(36) Wang, P. S. P.; Nguyen, J. B.; Schepartz, A. J. Am. Chem. Soc.
2014, 136, 6810−6813.
DEDICATION
■
This paper is dedicated to the memory of Professor Ronald
Breslow.
(37) Becart, D.; Diemer, V.; Salaun, A.; Oiarbide, M.; Nelli, Y. R.;
Kauffmann, B.; Fischer, L.; Palomo, C.; Guichard, G. J. Am. Chem.
Soc. 2017, 139, 12524−12532.
REFERENCES
■
(38) Taylor, A. I.; Pinheiro, V. B.; Smola, M. J.; Morgunov, A. S.;
Peak-Chew, S.; Cozens, C.; Weeks, K. M.; Herdewijn, P.; Holliger, P.
Nature 2015, 518, 427−430.
(39) Akagawa, K.; Kudo, K. Acc. Chem. Res. 2017, 50, 2429−2439.
(40) Kinghorn, M. J.; Valdivia-Berroeta, G. A.; Chantry, D. R.;
Smith, M. S.; Ence, C. C.; Draper, S. R. E.; Duval, J. S.; Masino, B. M.;
Cahoon, S. B.; Flansburg, R. R.; Conder, C. J.; Price, J. L.; Michaelis,
D. J. ACS Catal. 2017, 7, 7704−7708.
(1) Wolfenden, R. Annu. Rev. Biochem. 2011, 80, 645−667.
(2) Herschlag, D.; Natarajan, A. Biochemistry 2013, 52, 2050−2067.
(3) Khersonsky, O.; Tawfik, D. S. Annu. Rev. Biochem. 2010, 79,
471−505.
(4) Desper, J. M.; Breslow, R. J. Am. Chem. Soc. 1994, 116, 12081−
12082.
(5) Cramer, K. D.; Zimmerman, S. C. J. Am. Chem. Soc. 1990, 112,
3680−3682.
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX