Please do not adjust margins
ChemComm
Page 4 of 5
ARTICLE
Journal Name
CF3
Fluorine Chem., 2016, 188, 157;DO(eI:)10g.1e0r3m9/yCl9aCtiCo0n1:173SK.
Schweizer, C. Tresse, P. Bisseret, J. Lalevée, G. Evano and N.
Blanchard, Org. Lett., 2015, 17, 1794.
(a) N. Iqbal, J. Jung, S. Park and E. J. Cho, Angew. Chem., Int.
Ed., 2014, 53, 539; (b) Z. Hang, Z. Li and Z.‐Q. Liu, Org. Lett.,
2014, 16, 3648; (c) T. Xu, C. W. Cheung and X. Hu, Angew.
Chem., Int. Ed., 2014, 53, 4910; (d) M. P. Jennings, E. A. Cork
and P. V. Ramachandran, J. Org. Chem., 2000, 65, 8763; (e)
C.‐J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J.
Stephenson, J. Am. Chem. Soc., 2012, 134, 8875.
R
O
Py CuIII CF3
O
RCO2
CF3
1
Ar
CF3
CF3
Ar
5a
LnCu-X
+
LnCuX
TScarboxylation
Ar
H
5
slow
rate-determining
R
O
R
O
CF3
H+
O
CF3
H
O
Ar
LnCuX
Ar
A
4
LnCu-X
Scheme 3 A plausible mechanism.
In conclusion, syn‐carboxylation‐trifluoromethylation
6
7
(a) Z. Li, A. Garcia‐Dominguez and C. Nevado, J. Am. Chem.
Soc., 2015, 137, 11610; (b) see also ref 11c.
Amino‐trifluoromethylation: (a) Y. Xiang, Y. Kuang and J. Wu,
a
reaction across the triple bond of terminal alkynes is
developed to produce regio‐ and stereoselectively
trifluoromethylated enol esters. This reaction uses a key
Cu(III)‐CF3 complex as the CF3 source and carboxylic acids as
the carboxylate source to difunctionalize terminal alkynes with
high regio‐ and stereoselectivity. It is applicable to a broad
range of carboxylic acids and alkynes, can be easily scaled up
to gram scale, and has be applied to the late‐stage
functionalization of dehydrocholic acid.
Org. Chem. Front., 2016, 3, 901; (b) G.‐C. Ge, X.‐J. Huang, C.‐
H. Ding, S.‐L. Wan, L.‐X. Dai and X.‐L. Hou, Chem. Commun.,
2014, 50, 3048; (c) F. Wang, N. Zhu, P. Chen, J. Ye and G. Liu,
Angew. Chem., Int. Ed., 2015, 54, 9356.
Carboxyl‐trifluoromethylation of alkynes: (a) P. G. Janson, I.
Gaoneim, N. O. Ilchenko and K. J. Szabó, Org. Lett., 2012, 14
2882; (b) H. Egami, R. Shimizu, S. Kawamura and M.
Sodeoka, Tetrahedron Lett., 2012, 53, 5503; (c) R. Tomita, T.
Koike and M. Akita, Angew. Chem., Int. Ed., 2015, 54, 12923.
For a related perfluoroalkyl‐carboxylation of alkynes, see: X.
Wang and A. Studer, Org. Lett., 2017, 19, 2977.
8
9
,
This study was supported by the National Natural Science
Foundation of China (No. 21472068).
Conflicts of interest
There are no conflicts of interest to declare.
10 (a) S.‐L. Zhang and W.‐F. Bie, Dalton Trans., 2016, 45, 17588;
(b) S.‐L. Zhang and W.‐F. Bie, RSC Adv., 2016, , 70902; (c)
6
S.‐L. Zhang, C. Xiao and H.‐X. Wan, Dalton Trans., 2018, 47
4779; (d) C. Xiao and S.‐L. Zhang, Dalton Trans., 2019, 48
848.
,
,
Notes and references
11 (a) S.‐L. Zhang, H.‐X. Wan and W.‐F. Bie, Org. Lett., 2017, 19
6372; (b) S.‐L. Zhang and C. Xiao, J. Org. Chem., 2018, 83
,
,
1
2
3
4
(a) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley‐VCH,
Weinheim, Germany, 2004; (b) K. Uneyama, Organofluorine
Chemistry, Blackwell, Oxford, U.K., 2006; (c) S. Purser, P. R.
Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev.,
2008, 37, 320; (d) Y. Jiang, H. Yu, Y. Fu and L. Liu, Sci. China:
Chem., 2015, 58, 673.
(a) M. Schlosser, Angew. Chem., Int. Ed., 2006, 45, 5432; (b)
J.‐A. Ma and D. Cahard, Chem. Rev., 2008, 108, PR1; (c) V. V.
Grushin, Acc. Chem. Res., 2010, 43, 160; (d) T. Furuya, A. S.
Kamlet and T. Ritter, Nature, 2011, 473, 470; (e) T. Liang, C.
10908; (c) C. Xiao, H.‐X. Wan and S.‐L. Zhang, Asian J. Org.
Chem., 2019, DOI: 10.1002/ajoc.201800432.
12 For related Cu(III)‐CF3 complexes, see: (a) M. A. Willert‐
Porada, D. J. Burton and N. C. Baenziger, J. Chem. Soc. Chem.
Commun. 1989, 1633; (b) D. Naumann, T. Roy, K.‐F. Tebbe
and W. Crump, Angew. Chem. Int. Ed. Engl., 1993, 32, 1482;
(c) A. M. Romine, N. Nebra, A. I. Konovalov, E. Martin, J.
Benet‐Buchholz and V. V. Grushin, Angew. Chem., Int. Ed.,
2015, 54, 2745; (d) X. Tan, Z. Liu, H. Shen, P. Zhang, Z. Zhang
and C. Li, J. Am. Chem. Soc., 2017, 139, 12430.
N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2013, 52
8214.
,
13 4a
ppm. Some byproducts
characterized as shown in Tables 2 and 3. The major NMR
differences are summarized for and 4’ in Figure S1 in ESI
,
4a′
and 5a feature 19F signals at ca. ‐58.5, ‐55.5 and ‐50.0
were isolated and fully
Cascade cross‐coupling: (a) J.‐P. Begue, D. Bonnet‐Delpon, D.
Bouvet and M. H. Rock, J. Chem. Soc. Perkin Trans. 1, 1998,
1797; (b) A. A. Goldberg, V. M. Muzalevskiy, A. V. Shastin, E.
S. Balenkova and V. G. Nenajdenko, J. Fluorine Chem., 2010,
131, 384; (c) Y. Zhao, Y. Zhou, J. Liu, D. Yang, L. Tao, Y. Liu, X.
Dong, J. Liu and J. Qu, J. Org. Chem., 2016, 81, 4797.
4′
4
†.
14 19F NMR detected an upfield shifted signal at ca +17.5 ppm,
assigned to the formation of acyl fluorides. See: T. Scattolin,
K. Deckers and F. Shoenebeck, Org. Lett., 2017, 19, 5740.
15 Aliphatic alkynes (e.g. 5‐chloropentyne) gave complex
mixtures while internal alkynes (e.g., diphenylacetylene)
were completely inactive under the reaction conditions.
More, ortho‐chlorophenylacetylene was found to give the
desired product in a 33% NMR yield, but the major product
For a review of functionalization of Ar‐C≡C‐CF3, see: (a) T.
Konno, Synlett, 2014, 25, 1350. For a related example to the
current study: (b) M. Kawatsura, J. Namioka, K. Kajita, M.
Yamamoto, H. Tsuji and T. Itoh, Org. Lett., 2011, 13, 3285;
For other examples, see: (c) arylation: Y. Yamamoto, E.
Ohkubo and M. Shibuya, Green Chem., 2016, 18, 4628; (d)
amination: B. A. Trofimov, L. V. Andriyankova, L. P. Nikitina,
K. V. Belyaeva, A. G. Mal’kina, A. V. Afonin, I. A. Ushiakov, V.
is the Ar‐C≡C‐CF3 in a yield of 48%.
16 For some mechanistic studies, see ESI† for more details.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins