6616
M. P. Trova et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6613–6617
Table 1
noted for many of the compounds, and some had significantly im-
proved antiproliferative activities. In particular, derivatives 18g
and 9c demonstrated 1000-fold and 1250-fold improvements
respectively, in the growth inhibition of HeLa cells compared to
roscovitine (1).
In vitro Inhibition of Cdks and effect on cell proliferation for compounds 4a, 4b, 4f,
4h–j, 5c–e, 5g, 8a, 8b, 9c–e, 13, 14, 15a–e, 16a–d, 17e, 17f, and 18a–d, 18g
Compds Cdk2/cyclinA30 IC50
,
Cdk2/cyclinE30 IC50
,
HeLa31 GI50
,
lM
l
M
lM
2
4a
4b
4f
4h
4i
4j
5c
0.40
0.2
0.3
0.1
0.4
0.10
0.1
0.07
0.09
0.3
0.077
0.044
0.14
0.048
0.38
0.04
0.03
0.17
0.02
0.27
0.4
Acknowledgments
The authors thank the NCI and PanLabs for conducting the
kinase panel screens.
0.4
0.2
0.15
0.14
0.2
0.5
0.6
0.09
0.95
0.2
0.2
0.2
5d
5e
5g
References and notes
1. Norbury, C.; Nurse, P. A. Annu. Rev. Biochem. 1992, 61, 441.
2. Sanchez, I.; Dynlacht, B. D. Semin. Cell Dev. Biol. 2005, 16, 311.
3. Hochegger, H.; Takeda, S.; Hunt, H. Nat. Rev. Mol. Cell. Bio. 2008, 9, 910.
4. Morgan, D. O. Nature 1995, 374, 131.
5. Pines, J. Nat. Cell Biol. 1999, 1, E73.
6. Hall, M.; Peters, G. Adv. Cancer Res. 1996, 68, 67.
8a
8b
9c
9d
9e
13
14
15a
15b
15c
15d
15e
16a
16b
16c
16d
17e
17f
18a
18b
18c
18d
18g
0.1
0.5
0.04
0.4
0.04
<0.05
0.4
0.085
0.15
0.08
0.09
0.3
0.2
0.1
0.2
0.1
0.2
0.1
<0.03
0.03
0.055
<0.04
0.044
<0.04
0.05
0.071
0.5
0.016
0.2
0.08
<0.05
0.7
0.25
0.3
0.4
0.25
0.5
0.7
0.3
0.3
0.2
0.6
0.2
0.1
0.09
0.14
0.1
1.5
0.9
4
0.37
0.33
0.3
0.19
0.39
0.2
0.16
0.15
0.3
7. Malumbres, M.; Barbacid, M. Nat. Rev. Cancer 2009, 9, 153.
8. Akinaga, S.; Sugiyama, K.; Akiyama, T. Anti-Cancer Drug Des. 2000, 15, 43.
9. Carlson, B. A.; Dubay, M. M.; Sausville, E. A.; Brizuella, L.; Worland, P. J. Cancer
Res. 1996, 56, 2973.
10. Losiewicz, M. D.; Carlson, B. A.; Kaur, G.; Suasville, E. A.; Worland, P. J. Biochem.
Biophys. Res. Commun. 1994, 201, 589.
11. Bramson, H. N.; Corona, J.; Davis, S. T.; Dickerson, S. H.; Edelstein, M.; Frye, S.
V.; Gampe, R. T.; Harris, P. A.; Hassell, A.; Holmes, W. D.; Hunter, R. N.; Lackey,
K. E.; Lovejoy, B.; Luzzio, M. J.; Montana, V.; Rocque, W. J.; Rusnak, D.;
Shewchuk, L.; Veal, J. M.; Walker, D. H.; Kuyper, L. E. J. Med. Chem. 2001, 44,
4339.
12. Dermatakis, A.; Kuk, K.-C.; DePinto, W. Bioorg. Med. Chem. 2003, 11, 1873.
13. Andreani, A.; Cavalli, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.;
Rambaldi, M.; Garnier, M.; Meijer, L. Anti-Cancer Drug Des. 2000, 15, 447.
14. Mettey, Y.; Gompel, M.; Thomas, V.; Garnier, M.; Leost, M.; Ceballos-Picot, I.;
Noble, M.; Endicott, J.; Vierfond, J.-M.; Meijer, L. J. Med. Chem. 2003, 46, 222.
15. Barvian, M.; Boschelli, D. H.; Cossrow, J.; Dobrusin, E.; Fattaey, A.; Fritsch, A.;
Fry, D.; Harvey, P.; Keller, P.; Garrett, M.; La, F.; Leopold, W.; McNamara, D.;
Quin, M.; Trumpp-Kallmeyer, S.; Toogood, P.; Wu, Z. P.; Zhang, E. J. Med. Chem.
2000, 43, 4606.
2
0.2
0.027
0.31
0.3
0.04
0.27
0.098
0.02
0.07
16. Sielecki, T. M.; Johnson, T. L.; Liu, J.; Muckelbauer, J. K.; Grafstrom, R. H.; Cox, S.;
Boylan, J.; Burton, C. R.; Chen, H.; Smallwood, A.; Chang, C.-H.; Boisclair, M.;
Benfield, P. A.; Trainor, G. L.; Seitz, S. P. Bioorg. Med. Chem. Lett. 2001,
11, 1157.
17. Yue, E. W.; Higley, C. A.; DiMeo, S. V.; Carini, D. J.; Nugiel, D. A.; Benware, C.;
Benfield, P. A.; Burton, C. R.; Cox, S.; Grafstrom, R. H.; Sharp, D. M.; Sisk, L. M.;
Boylan, J. F.; Muckelbauer, J. K.; Smallwood, A. M.; Chen, H.; Chang, C.-H.; Seitz,
S. P.; Trainor, G. L. J. Med. Chem. 2002, 45, 5233.
A series of derivatives was prepared wherein heteroaryl rings
were incorporated for both the proximal and distal phenyl rings
of 2. For compounds 16a–d and 18a–c the proximal ring was a
2-thienyl ring substituted at the 5-position with a variety of het-
erocycles. Only 18b demonstrated improved antiproliferative
activity and Cdk2/cyclin inhibition relative to 2. Compounds 8a
and 8c having the 3-pyridyl proximal ring had very potent antipro-
liferative activities; therefore, compounds 17e, 17f, 18d and 18g
with a proximal 3-pyridyl ring substituted with heterocycles at
the 6-position were prepared. The compounds with the 3-thienyl
17e and 1-pyrazole 18g rings appended to the 6-position demon-
strated excellent antiproliferative activities. Compounds 17e, 17f,
18a–d, and 18g all demonstrated outstanding Cdk2/cyclinE inhibi-
tion properties as well.
18. Meijer, L.; Raymond, E. Acc. Chem. Res. 2003, 36, 417.
19. Schow, S. R.; Mackman, R. L.; Blum, C. L.; Brooks, E.; Horsma, A. G.; Joly, A.;
Kerwar, S. S.; Lee, G.; Shiffman, D.; Nelson, M. G.; Wang, X.; Wick, M. M.; Zhang,
X.; Lum, R. T. Bioorg. Med. Chem. Lett. 1997, 7, 2697.
20. Gray, N. S.; Kwon, S.; Schultz, P. G. Tetrahedon Lett. 1997, 38, 1161.
21. Lum, R. T.; Blum, C. L.; Mackman, R.; Wick, M. M.; Schow, S. R.; Zablocki, J.;
Ibrahim, P. WO2000044750, 2000.
22. 22 Dumont, J. A.; Bitonti, A. J.; Borcherding, D. R.; Peet, N. P.; Munson, H. R.;
Shum, P. W. US 6,479,487, 2002.
23. Vesely, J.; Havlicek, L.; Strnad, M.; Blow, J. J.; Donella-Deana, A.; Pinna, L.;
Letham, D. S.; Kato, J. Y.; Detivaud, L.; Leclerc, S.; Meijer, L. Eur. J. Biochem. 1994,
224, 771.
24. Meijer, L.; Borgne, A.; Mulner, O.; Chong, J. P. J.; Blow, J. J.; Inagaki, M.; Delcros,
J. G.; Moulinoux, J. P. Eur. J. Biochem. 1997, 243, 527.
25. Trova, M. WO2000055161, 2000.
26. Trova, M. WO2003022805, 2003.
27. Trova, M. WO2003022219, 2003.
28. Trova, Michael P.; Friedrich, Thomas D.; Alicea, L. R.; Barford, C. A.; Barnes, K.
D.; Benanti, T.; Bergeron, M. E.; Bielaska, M.; Bilotta, J. A.; Burry, L. C.; Davisdon,
M. R.; Duong, T. N.; Haydar, S. N.; Hui, Y.; Johnson, M. R.; Johnson, R. E.; Lu, J.;
Murphy, C. M.; O’Grady, H. R.; Peace, D.; Rainka, M. P.; Russell, M.; Salamone,
S.; Smith, J. L.; Snider, P. A.; Toporowski, J. W.; Tregay, S. W.; Wilson, A. C.;
Wyle, M. J.; Yao, X.; Zheng, X. Presented at the 31st Northeast Regional Meeting
of the American Chemical Society, Saratoga Springs, NY, June 2003; Paper 58.
29. Trova, M. P.; Barnes, K. D.; Barford, C.; Benanti, T.; Bielaska, M.; Burry, L.;
Lehman, J. M.; Murphy, C.; O’Grady, H.; Peace, D.; Salamone, S.; Smith, J.;
Snider, P.; Toporowski, J.; Tregay, S.; Wilson, A.; Wyle, M.; Zheng, X.; Friedrich,
T. D. Bioorg. Med. Chem. Lett. 2009, 19, 6608.
In summary, a series of purines was prepared using 2 as the
starting scaffold in which the biphenylmethylamino group at C-6
was replaced with heterobiarylmethylamino groups. Although
the antiproliferative activity did not correlate well with the Cdk
inhibitory activity, many of the compounds had excellent antipro-
liferative activity. This lack of correlation between Cdk inhibition
and antiproliferative activity may be due to additional mechanisms
of action. Select compounds were screened against a panel of
kinases at PanLabs32 and a panel of kinases by the NCI,33 with no
significant inhibition of any of the kinases observed. A detailed
reporting of this work and other biochemical mechanism of action
studies that were conducted on select compounds will be the sub-
ject of future publications. Additionally, cytotoxicity profiling was
conducted for select compounds in the NCI panel of 60-trans-
formed cell lines as well as in vivo testing. These studies will also
be reported in due course. Typically 10 to 100-fold improvements
in the Cdk inhibitory activities compared to roscovitine (1) were
30. The following are the conditions used for the Cdk2/cyclinA and Cdk2/cyclinE
assays. Recombinant Cdk2/CyclinA (15 ng) and Cdk2/cyclinE (5 ng) (Upstate
Biotechnology) assays were carried out in 50 mM Tris–HCl pH 7.4, 10 mM
MgCl2, 1 mM DTT, 0.1 mg/mL histone H1, 0.016 mM ATP, 1
lCi [c
32P]ATP. A
concentration range of each inhibitor dissolved in DMSO was added to the Cdk/
cyclin complexes in assay buffer in the absence of ATP. DMSO was kept