Organic Letters
Letter
protocol in ref 3 was 49%, but this was not the norm. Because of the
significant technical difficulties and reaction variations that
attend this method,3 we recommend that other workers use the
much more consistent ultrahigh-dilution rt cyclization procedure that
under our rt conditions, intermolecular dimerization of 3 still
continues to be significant, but generally less so than under the 50
°C reaction conditions.3,16
SQUEEZE-processed crystallographic data for 29 (CIF)
Original crystallographic data for 29 (CIF)
Crystallographic data for 13 (CIF)
Crystallographic data for 19 (CIF)
AUTHOR INFORMATION
Corresponding Author
■
In order to complete our synthesis of (+)-prunustatin A, the
Boc group of 29 was detached with neat CF3CO2H in CH2Cl2,
and the crude TFA salt 30 was coupled with 13,4,18 using EDCI,
N-ethylmorpholine (NEM), and 1-hydroxybenzotriazole
(HOBt). The desired product 31 was isolated in 63% yield
after SiO2 flash chromatography; it was identical to the same
compound prepared by Usuki.4 Compound 31 was then
deprotected by catalytic hydrogenation with 10% Pd/C in
EtOAc/MeOH (1:1) at 1 atm; synthetic (+)-prunustatin A was
isolated in 65% yield after SiO2 chromatography (0.74% overall).
Its spectroscopic values closely matched those reported by Shin-
ya,1,2 Kawanishi,3 and Usuki,4 thus confirming that the natural
product had indeed been synthesized. NaBH4 reduction of
(+)-prunustatin A in EtOH also furnished the immunosuppres-
sant (+)-SW-163A,6 in accord with Shin-ya’s 2007 limited
report.2
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank QUB and the ACS for helping to fund this work. We
are also extremely grateful to Dr. Eiji Kawanishi of Mitsubishi
Tanabe Pharma for very kindly supplying us with PDF copies of
his spectra for (+)-prunustatin A, SW-163A, and macrolide 29.
REFERENCES
■
(1) Umeda, Y.; Chijiwa, S.; Furihata, K.; Furihata, K.; Sakuda, S.;
Nagasawa, H.; Watanabe, H.; Shin-ya, K. J. Antibiot. 2005, 58, 206.
(2) Umeda, Y.; Furihata, K.; Sakuda, S.; Nagasawa, H.; Ishigami, K.;
Watanabe, H.; Izumikawa, M.; Takagi, M.; Doi, T.; Nakao, Y.; Shin-ya,
K. Org. Lett. 2007, 9, 4239.
(3) Yamakoshi, S.; Kawanishi, E. Tetrahedron Lett. 2014, 55, 1175.
(4) Usuki, Y.; Ogawa, H.; Yoshida, K.; Inaoka, T.; Iio, H. Asian J. Org.
Chem. 2015, 4, 737.
(5) Booth, L.; Roberts, J. L.; Cash, D. R.; Tavallai, S.; Jean, S.; Fidanza,
A.; Cruz-Luna, T.; Siembiba, P.; Cycon, K. A.; Cornelissen, C. N.; Dent,
P. J. Cell. Physiol. 2015, 230, 1661.
(6) Takahashi, K.; Tsuda, E.; Kurosawa, K. J. Antibiot. 2001, 54, 867.
(7) (a) Sharpless, K. B.; Amberg, W.; Bennani, Y.; Crispino, G. A.;
Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M. J.
Org. Chem. 1992, 57, 2768. (b) Sharpless, K. B.; Amberg, W.; Beller, M.;
Chen, H.; Hartung, J.; Kawanami, Y.; Lubben, D.; Manoury, E.; Ogino,
Y.; Shibata, T.; Ukita, T. J. Org. Chem. 1991, 56, 4585.
(8) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett
1998, 1998, 26.
Given that we had unambiguously proven the stereochemistry
of 29, we next deprotected its Boc group and coupled 30 to
PhCO2H in order to secure what we hoped was going to be the
structurally related natural product JBIR-0417 (Scheme 4),
Scheme 4. Our Attempted Synthesis of JBIR-04
(9) Hale, K. J.; Grabski, M.; Manaviazar, S.; Maczka, M. Org. Lett. 2014,
16, 1164.
(10) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull.
Chem. Soc. Jpn. 1979, 52, 1989.
(11) n-Pr4NRuO4/NMO review: Ley, S. V.; Norman, J.; Griffith, W. P.;
Marsden, S. P. Synthesis 1994, 1994, 639.
(12) Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981,
37, 2091.
(13) (a) Diazotization method: Poterala, M.; Plenkiewicz, J.
Tetrahedron: Asymmetry 2011, 22, 294. (b) Elgersma, R. C.; Meijneke,
T.; Posthuma, G.; Rijkers, D. T. S.; Liskamp, R. M. J. Chem. - Eur. J. 2006,
12, 3714.
(14) Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett. 2002, 43, 7535.
(15) Dessolin, M.; Guillerez, M.-G.; Thieriet, N.; Guibe, F.; Loffet, A.
Tetrahedron Lett. 1995, 36, 5741.
whose absolute stereostructure has not been assigned to date.
Unfortunately, our spectroscopic comparisons of 32 with JBIR-
04 soon confirmed that JBIR-04 has different absolute
stereochemistry than (+)-prunustatin A, which perhaps explains
why its GRP78-downregulatory effects are 200 times lower.
In conclusion, we have devised unified, highly stereoselective
total syntheses of (+)-prunustatin A, SW-163A, and JBIR-04
diastereoisomer 32.18 The latter synthesis also revealed that the
absolute stereochemistry of JBIR-04 differs from that found in
(+)-prunustatin A. We expect that our new synthetic pathway to
these molecules will prove useful for fashioning analogues,
including biotinylated ones, which would have potential value for
new drug target retrieval by affinity chromatography.
(16) Because ref 3 reports no experimental procedures at all, we
reproduced as best we could the 50 °C macrocyclization in THF/
CH2Cl2 outlined in that paper.
(17) Izumikawa, M.; Ueda, J.; Chijiwa, S.; Takagi, M.; Shin-ya, K. J.
Antibiot. 2007, 60, 640.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
(18) Recent syntheses of respirantin and kitastatin: (a) Pettit, G. R.;
Smith, T. H.; Feng, S.; Knight, J. C.; Tan, R.; Pettit, R. K.; Hinrichs, P. A.
J. Nat. Prod. 2007, 70, 1073. (b) Beveridge, R. E.; Batey, R. A. Org. Lett.
2014, 16, 2322.
■
S
Full experimental procedures for all steps, copies of the IR,
HMRS, and 1H/13C NMR spectra of every intermediate,
and X-ray plots and crystallographic data for 19, 13, and 29
(including CCDC accession numbers) (PDF)
D
Org. Lett. XXXX, XXX, XXX−XXX